New congruences on multiple harmonic sums and Bernoulli numbers

被引:0
|
作者
Wang, Liuquan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 97卷 / 1-2期
基金
中国国家自然科学基金;
关键词
congruences; Bernoulli numbers; multiple harmonic sums; CURIOUS CONGRUENCE;
D O I
10.5486/PMD.2020.8768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P-n denote the set of positive integers which are prime to n. Let B-n be the n-th Bernoulli number. For any prime p >= 11 and integer r >= 2, we prove that Sigma(l1+l2+ ... +l6 = pr l1, ... ,l6 is an element of Pp) 1/l(1)l(2)l(3)l(4)l(5)l(6) - 5!/18p(r-1) B-p-3(2) (mod p(r)). This extends a family of curious congruences. We also obtain other interesting congruences involving multiple harmonic sums and Bernoulli numbers.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 50 条