NEW CONGRUENCES FOR SUMS INVOLVING APERY NUMBERS OR CENTRAL DELANNOY NUMBERS

被引:20
|
作者
Guo, Victor J. W. [1 ]
Zeng, Jiang [2 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
基金
美国国家科学基金会;
关键词
Apery numbers; central Delannoy numbers; q-binomial coefficients; q-Chu-Vandermonde formula; q-Lucas theorem; Wolstenholme's theorem; POWERS;
D O I
10.1142/S1793042112501138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Apery numbers A(n) and central Delannoy numbers D-n are defined by A(n) = Sigma(n)(k=0) (n+k 2k)(2) (25 k)(2), D-n = Sigma(n)(k=0) (n+k 2k)(2) (25 k). Motivated by some recent work of Z.-W. Sun, we prove the following congruences: Sigma(n-1)(k=0) (2k+1)(2r+1) A(k) equivalent to Sigma(n-1)(k=0) epsilon(k) (2k+1)(2r+1) D-k equivalent to 0 (mod n), where n >= 1, r >= 0, and epsilon = +/- 1. For r = 1, we further show that Sigma(n-1)(k=0) (2k+1)(3) A(k) equivalent to 0 (mod n(3)), Sigma(p-1)(k=0) (2k+1)(3) A(k) equivalent to p(3) (mod 2p(6)), where p > 3 is a prime. The following congruence Sigma(n-1)(k=0) (n+k k)(2) (n-1 k)(2) equivalent to 0 (mod n) plays an important role in our proof.
引用
收藏
页码:2003 / 2016
页数:14
相关论文
共 50 条