Growth and characterization of 4H-SiC by horizontal hot-wall CVD

被引:0
|
作者
Sun, GS [1 ]
Gao, X [1 ]
Wang, L [1 ]
Zhao, WS [1 ]
Zeng, YP [1 ]
Li, JM [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Novel Semicond Mat Lab, Beijing 100083, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
4H-SiC layers have been homoepitaxially grown at 1500 degrees C with the use of a horizontal hot-wall chemical vapor deposition (CVD) system, which was built in the author's group. The typical growth rate was 2 mu m/h at a pressure of 40 Torr. The background donor concentration has been reduced to 2.3 x 10(15) cm(-3) during a prolonged growth run. It confirmed the idea that the high background concentration of thin films was caused by the impurities inside the susceptor and thermal insulator The FWHM of x-ray co-rocking curves show 9 similar to 15 aresecs in five different areas of a 32-mu m-thick 4H-SiC epilayer The free exciton peaks dominated in the near-band-edge low-temperature photoluminescence spectrum (LTPL), indicating high crystal quality.
引用
收藏
页码:89 / 92
页数:4
相关论文
共 50 条
  • [1] High epitaxial growth rate of 4H-SiC using horizontal hot-wall CVD
    Myers, R. L.
    Shishkin, Y.
    Kordina, O.
    Haselbarth, I.
    Saddow, S. E.
    Silicon Carbide and Related Materials 2005, Pts 1 and 2, 2006, 527-529 : 187 - 190
  • [2] Characterization of thick 4H-SiC hot-wall CVD layers
    Paisley, MJ
    Irvine, KG
    Kordina, O
    Singh, R
    Palmour, JW
    Carter, CH
    WIDE-BANDGAP SEMICONDUCTORS FOR HIGH-POWER, HIGH-FREQUENCY AND HIGH-TEMPERATURE APPLICATIONS-1999, 1999, 572 : 167 - 172
  • [3] Homoepitaxial growth of 4H-SiC by hot-wall CVD using BTMSM
    Seo, Han Seok
    Song, Ho Geun
    Moon, Jeong Hyun
    Yim, Jeong Hyuk
    Oh, Myeong Sook
    Lee, Jong Ho
    Choi, Yu Jin
    Kim, Hyeong Joon
    SILICON CARBIDE AND RELATED MATERIALS 2007, PTS 1 AND 2, 2009, 600-603 : 151 - 154
  • [4] Surface preparation of 4H-SiC substrates for hot-wall CVD of SiC layers
    Wagner, G
    Doerschel, J
    Gerlitzke, A
    APPLIED SURFACE SCIENCE, 2001, 184 (1-4) : 55 - 59
  • [5] Fast epitaxial growth of 4H-SiC by chimney-type hot-wall CVD
    Fujihira, K
    Kimoto, T
    Matsunami, H
    SILICON CARBIDE AND RELATED MATERIALS 2001, PTS 1 AND 2, PROCEEDINGS, 2002, 389-3 : 175 - 178
  • [6] Growth and characterization of 4H-SiC in vertical hot-wall chemical vapor deposition
    Fujihira, K
    Kimoto, T
    Matsunami, H
    JOURNAL OF CRYSTAL GROWTH, 2003, 255 (1-2) : 136 - 144
  • [7] High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor
    Chowdhury, Iftekhar
    Chandrasekhar, M. V. S.
    Klein, Paul B.
    Caldwell, Joshua D.
    Sudarshan, Tangali
    JOURNAL OF CRYSTAL GROWTH, 2011, 316 (01) : 60 - 66
  • [8] Aluminum incorporation into 4H-SiC layers during epitaxial growth in a hot-wall CVD system
    Wagner, G
    Leitenberger, W
    Irmscher, K
    Schmid, F
    Laube, M
    Pensl, G
    SILICON CARBIDE AND RELATED MATERIALS 2001, PTS 1 AND 2, PROCEEDINGS, 2002, 389-3 : 207 - 210
  • [9] Aluminum incorporation into 4H-SiC layers during epitaxial growth in a hot-wall CVD system
    Wagner, G.
    Leitenberger, W.
    Irmscher, K.
    Schmid, F.
    Laube, M.
    Pensl, G.
    Materials Science Forum, 2002, 389-393 (01) : 207 - 210
  • [10] Fast epitaxial growth of high-quality 4H-SiC by vertical hot-wall CVD
    Fujihira, K
    Kimoto, T
    Matsunami, H
    SILICON CARBIDE AND RELATED MATERIALS - 2002, 2002, 433-4 : 161 - 164