Convergence Analysis of a Coupled Method for Time-Dependent Convection-Diffusion Equations

被引:4
|
作者
Riviere, Beatrice [1 ]
Yang, Xin [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
关键词
discontinuous Galerkin; error analysis; finite volume; subdomain-coupling;
D O I
10.1002/num.21800
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coupling of two locally mass conservative methods is formulated and analyzed for the time-dependent convection-diffusion problem. Finite volume method is used in some subdomains and interior penalty discontinuous Galerkin method is used in other subdomains. Numerical examples show the advantages of the proposed hybrid method, namely an accurate approximation obtained at a reduced computational cost. (c) 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 133-157, 2014
引用
收藏
页码:133 / 157
页数:25
相关论文
共 50 条
  • [31] Singular boundary method for transient convection-diffusion problems with time-dependent fundamental solution
    Wang, Fajie
    Chen, Wen
    Tadeu, Antonio
    Correia, Carla G.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 114 : 1126 - 1134
  • [32] Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation
    Li, Jin
    Cheng, Yongling
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (07): : 4034 - 4056
  • [33] Uniform estimates for a family of Eulerian-Lagrangian methods for time-dependent convection-diffusion equations with degenerate diffusion
    Wang, Kaixin
    Wang, Hong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 1006 - 1037
  • [34] An Explicit Method for Convection-Diffusion Equations
    Ruas, Vitoriano
    Brasil, Antonio, Jr.
    Trales, Paulo
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (01) : 65 - 91
  • [35] Stability and convergence analysis of the quadratic spline collocation method for time-dependent fractional diffusion equations
    Liu, Jun
    Fu, Hongfei
    Chai, Xiaochao
    Sun, Yanan
    Guo, Hui
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 633 - 648
  • [36] An explicit method for convection-diffusion equations
    Vitoriano Ruas
    Antonio Brasil
    Paulo Trales
    Japan Journal of Industrial and Applied Mathematics, 2009, 26
  • [37] Fibonacci wavelet method for time fractional convection-diffusion equations
    Yadav, Pooja
    Jahan, Shah
    Nisar, Kottakkaran Sooppy
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2639 - 2655
  • [38] On the convergence of basic iterative methods for convection-diffusion equations
    Bey, J
    Reusken, A
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (05) : 329 - 352
  • [39] Some observations on multigrid convergence for convection-diffusion equations
    Ramage, Alison
    Elman, Howard C.
    COMPUTING AND VISUALIZATION IN SCIENCE, 2007, 10 (01) : 43 - 56
  • [40] A stabilizer free spatial weak Galerkin finite element methods for time-dependent convection-diffusion equations
    Al-Taweel, Ahmed
    Hussain, Saqib
    Wang, Xiaoshen
    Cheichan, Mohammed
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2022, 22 (02) : 495 - 510