Singular boundary method for transient convection-diffusion problems with time-dependent fundamental solution

被引:41
|
作者
Wang, Fajie [1 ,2 ,3 ]
Chen, Wen [1 ]
Tadeu, Antonio [2 ,3 ]
Correia, Carla G. [2 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Ctr Numer Simulat Software Engn & Sci, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
[2] ITeCons Inst Res & Technol Dev Construct Energy E, Rua Pedro Hispano S-N, P-3030289 Coimbra, Portugal
[3] Univ Coimbra, Dept Civil Engn, ADAI LAETA, Polo 2,Rua Luis Reis Santos, P-3030788 Coimbra, Portugal
基金
中国国家自然科学基金;
关键词
Convection-diffusion; Singular boundary method; Origin intensity factors; Time-dependent fundamental solution; PHASE-CHANGE PROBLEMS; ELEMENT METHOD; DUAL RECIPROCITY; EQUATIONS; FORMULATION;
D O I
10.1016/j.ijheatmasstransfer.2017.07.007
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper derives the time-dependent fundamental solution of the transient convection-diffusion problem by employing the exponential variable and Fourier transformations. A singular boundary method (SBM) formulation using this time-dependent fundamental solution is first applied in the simulation of the transient convection-diffusion problems. Accurate formulas are derived to evaluate the origin intensity factors in the SBM. The proposed method is mathematically simple, matrix-free and fully explicit. Furthermore, this scheme is computationally fast, stable, and requires low memory, since it does not need to solve any algebraic equations. Three benchmark examples, including three-dimensional cases, are presented to verify this time-dependent SBM strategy. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1126 / 1134
页数:9
相关论文
共 50 条
  • [1] Singular boundary method using time-dependent fundamental solution for transient diffusion problems
    Chen, Wen
    Wang, Fajie
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2016, 68 : 115 - 123
  • [2] A stable explicit method for time-dependent convection-diffusion problems
    Ruas, V.
    Brasil, A. C. P., Jr.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 480 - +
  • [3] The Discontinuous Galerkin Method for Convection-Diffusion Problems in Time-Dependent Domains
    Kucera, Vaclav
    Feistauer, Miloslav
    Prokopova, Jaroslava
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 551 - 559
  • [4] An Adaptive Grid Method for Singularly Perturbed Time-Dependent Convection-Diffusion Problems
    Chen, Yanping
    Liu, Li-Bin
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (05) : 1340 - 1358
  • [5] ON THE SOLUTION OF THE TIME-DEPENDENT CONVECTION-DIFFUSION EQUATION BY THE FINITE-ELEMENT METHOD
    HEINRICH, JC
    YU, CC
    [J]. ADVANCES IN WATER RESOURCES, 1987, 10 (04) : 220 - 224
  • [6] A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems
    Clavero, C.
    Gracia, J. L.
    Stynes, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5240 - 5248
  • [7] Accurate approximations to time-dependent nonlinear convection-diffusion problems
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 1137 - 1158
  • [8] CALCULATING THE FUNDAMENTAL SOLUTION TO LINEAR CONVECTION-DIFFUSION PROBLEMS
    LIRON, N
    RUBINSTEIN, J
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (03) : 493 - 511
  • [9] Singular boundary method using time-dependent fundamental solution for scalar wave equations
    Wen Chen
    Junpu Li
    Zhuojia Fu
    [J]. Computational Mechanics, 2016, 58 : 717 - 730
  • [10] Singular boundary method using time-dependent fundamental solution for scalar wave equations
    Chen, Wen
    Li, Junpu
    Fu, Zhuojia
    [J]. COMPUTATIONAL MECHANICS, 2016, 58 (05) : 717 - 730