The quantum Neumann model: asymptotic analysis

被引:2
|
作者
Bellon, M
Talon, M
机构
[1] CNRS, LPHTE, F-75252 Paris 05, France
[2] Univ Paris 06, UMR 7589, F-75252 Paris, France
关键词
D O I
10.1016/j.physleta.2005.11.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use semi-classical and perturbation methods to establish the quantum theory of the Neumann model, and explain the features observed in previous numerical computations. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:283 / 289
页数:7
相关论文
共 50 条
  • [31] Asymptotic behavior of observables in the asymmetric quantum Rabi model
    Semple, J.
    Kollar, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (04)
  • [32] Neumann Domains on Quantum Graphs
    Lior Alon
    Ram Band
    Annales Henri Poincaré, 2021, 22 : 3391 - 3454
  • [33] Neumann Domains on Quantum Graphs
    Alon, Lior
    Band, Ram
    ANNALES HENRI POINCARE, 2021, 22 (10): : 3391 - 3454
  • [34] Von Neumann was not a Quantum Bayesian
    Stacey, Blake C.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2068):
  • [35] Asymptotic analysis of a selection model with space
    Mirrahimi, Sepideh
    Perthame, Benoit
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1108 - 1118
  • [36] ASYMPTOTIC ANALYSIS OF THE SURFING ACCELERATION MODEL
    Kalyakin, L. A.
    UFA MATHEMATICAL JOURNAL, 2012, 4 (02): : 102 - +
  • [37] Asymptotic analysis of the model of gyromagnetic autoresonance
    L. A. Kalyakin
    Computational Mathematics and Mathematical Physics, 2017, 57 : 281 - 296
  • [38] ASYMPTOTIC ANALYSIS OF A VISCOUS COCHLEAR MODEL
    KELLER, JB
    NEU, JC
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1985, 77 (06): : 2107 - 2110
  • [39] Asymptotic Analysis of a Semelparous Species Model
    Rudnicki, Ryszard
    Wieczorek, Radoslaw
    FUNDAMENTA INFORMATICAE, 2010, 103 (1-4) : 219 - 233
  • [40] Asymptotic Analysis of the Model of Gyromagnetic Autoresonance
    Kalyakin, L. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (02) : 281 - 296