The quantum Neumann model: asymptotic analysis

被引:2
|
作者
Bellon, M
Talon, M
机构
[1] CNRS, LPHTE, F-75252 Paris 05, France
[2] Univ Paris 06, UMR 7589, F-75252 Paris, France
关键词
D O I
10.1016/j.physleta.2005.11.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use semi-classical and perturbation methods to establish the quantum theory of the Neumann model, and explain the features observed in previous numerical computations. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:283 / 289
页数:7
相关论文
共 50 条
  • [21] Asymptotic analysis of a model of autoresonance
    Kalyakin, Leonid
    INTERNATIONAL CONFERENCE ON CONTROL AND SYNCHRONIZATION OF DYNAMICAL SYSTEMS (CSDS-2005), 2005, 23 : 17 - 22
  • [22] An asymptotic analysis of an autoresonance model
    Kalyakin, LA
    DOKLADY MATHEMATICS, 2001, 63 (03) : 379 - 382
  • [23] Asymptotic analysis of an autoresonance model
    Kalyakin, LA
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2002, 9 (01) : 84 - 95
  • [24] Asymptotic analysis of a multiferroic model
    L. A. Kalyakin
    A. K. Zvezdin
    Z. V. Gareeva
    Theoretical and Mathematical Physics, 2020, 203 : 457 - 468
  • [25] Asymptotic analysis of a multiferroic model
    Kalyakin, L. A.
    Zvezdin, A. K.
    Gareeva, Z. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 203 (01) : 457 - 468
  • [26] Asymptotic analysis of an autoresonance model
    Kalyakin, L.A.
    Doklady Akademii Nauk, 2001, 378 (05) : 594 - 598
  • [27] Methods of asymptotic analysis in cavity quantum electrodynamics
    Eberlein, C
    Wu, ST
    PHYSICAL REVIEW A, 2003, 68 (03):
  • [28] Asymptotic behavior of a Neumann parabolic problem with hysteresis
    Eleuteri, Michela
    Krejci, Pavel
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (04): : 261 - 277
  • [29] Neumann to Steklov eigenvalues: asymptotic and monotonicity results
    Lamberti, Pier Domenico
    Provenzano, Luigi
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (02) : 429 - 447
  • [30] Asymptotic Equipartition Theorems in von Neumann Algebras
    Fawzi, Omar
    Gao, Li
    Rahaman, Mizanur
    ANNALES HENRI POINCARE, 2025,