Optimal stochastic transport in inhomogeneous thermal environments

被引:6
|
作者
Bo, Stefano [1 ,2 ,3 ,4 ,5 ]
Aurell, Erik [2 ,6 ,7 ]
Eichhorn, Ralf [3 ,4 ]
Celani, Antonio [8 ,9 ]
机构
[1] Inst Canc Res & Treatment Candiolo IRC C, I-10060 Turin, Italy
[2] AlbaNova Univ Ctr, KTH Royal Inst Technol, Dept Computat Biol, SE-10691 Stockholm, Sweden
[3] KTH Royal Inst Technol, Nordita, SE-10691 Stockholm, Sweden
[4] Stockholm Univ, SE-10691 Stockholm, Sweden
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] KTH Royal Inst Technol, ACCESS Linnaeus Ctr, SE-10044 Stockholm, Sweden
[7] Aalto Univ, Dept Informat & Comp Sci, FI-00076 Aalto, Finland
[8] Inst Pasteur, F-75015 Paris, France
[9] CNRS, UMR 3525, F-75015 Paris, France
基金
芬兰科学院;
关键词
D O I
10.1209/0295-5075/103/10010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the optimization of the average entropy production in inhomogeneous temperature environments within the framework of stochastic thermodynamics. For systems modeled by Langevin equations (e.g. a colloidal particle in a heat bath) it has been recently shown that a space-dependent temperature breaks the time reversal symmetry of the fast velocity degrees of freedom resulting in an anomalous contribution to the entropy production of the overdamped dynamics. We show that optimization of entropy production is determined by an auxiliary deterministic problem formally analogous to motion on a curved manifold in a potential. The "anomalous contribution" to entropy plays the role of the potential and the inverse of the diffusion tensor is the metric. We also find that entropy production is not minimized by adiabatically slow, quasi-static protocols but there is a finite optimal duration for the transport process. As an example we discuss the case of a linearly space-dependent diffusion coefficient. Copyright (c) EPLA, 2013
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Optimal impulsive harvesting strategy of a stochastic Gompertz model in periodic environments
    Wang, Zhaojuan
    Liu, Meng
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [42] Probing inhomogeneous media by laser-induced thermal waves: A stochastic problem
    Aleshin, VV
    Chirkin, AS
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1995, 59 (12): : 55 - 59
  • [43] Compact stochastic models for multidimensional quasiballistic thermal transport
    Vermeersch, Bjorn
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (17)
  • [44] The role of stochastic thermal environments in modulating the thermal physiology of an intertidal limpet, Lottia digitalis
    Drake, Madeline J.
    Miller, Nathan A.
    Todgham, Anne E.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2017, 220 (17): : 3072 - 3083
  • [45] Calibration of local-stochastic volatility models by optimal transport
    Guo, Ivan
    Loeper, Gregoire
    Wang, Shiyi
    MATHEMATICAL FINANCE, 2022, 32 (01) : 46 - 77
  • [46] OPTIMAL CHOICE OF INITIAL FLUX FOR ITERATIVE SOLUTIONS OF INHOMOGENEOUS TRANSPORT-EQUATION
    SHALITIN, D
    WAGSCHAL, JJ
    YEIVIN, Y
    NUCLEAR SCIENCE AND ENGINEERING, 1977, 62 (03) : 364 - 370
  • [47] From Optimal Control to Mean Field Optimal Transport via Stochastic Neural Networks
    Di Persio, Luca
    Garbelli, Matteo
    SYMMETRY-BASEL, 2023, 15 (09):
  • [48] Turtle embryos move to optimal thermal environments within the egg
    Zhao, Bo
    Li, Teng
    Shine, Richard
    Du, Wei-Guo
    BIOLOGY LETTERS, 2013, 9 (04)
  • [49] Acclimation of thermal physiology in predictable and stochastic environments: a test of optimality theory
    Schuler, Matthew S.
    Storm, John J.
    Sears, Michael W.
    Cooper, Brandon S.
    Williams, Ben H.
    Angilletta, Michael J.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2009, 49 : E302 - E302
  • [50] Levy flights in inhomogeneous environments
    Garbaczewski, Piotr
    Stephanovich, Vladimir
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4419 - 4435