Dynamic simulation of powder packing structure for powder bed additive manufacturing

被引:61
|
作者
Lee, Y. S. [1 ,2 ,3 ]
Nandwana, P. [1 ,2 ]
Zhang, W. [3 ]
机构
[1] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Knoxville, TN USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA
[3] Ohio State Univ, Dept Mat Sci & Engn, Welding Engn Program, 116 W 19th Ave, Columbus, OH 43210 USA
关键词
Additive manufacturing; Packing density; Discrete element method; Powder bed; Binder jet; INCONEL; 718; NUMERICAL SIMULATIONS; COMPUTER-SIMULATION; LAYER; STEEL; PARTICLES; MODEL; FUSION; FLOW;
D O I
10.1007/s00170-018-1697-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Powder packing structure is a critical parameter of powder bed-based additive manufacturing (AM). Experimental characterization of powder is typically limited to measuring bulk properties, whereas many numerical models of AM powder packing are based on geometrical consideration without accounting for particle-to-particle interactions. In the present paper, the powder packing dynamics is simulated using a discrete element method (DEM)-based model that solves the mechanical contact forces and moments between individual particles. As DEM uses explicit time integration, a main challenge in modeling dynamics of metallic powder packing is the need for extremely fine time increment size (e.g., in the order of 1 ns for a 10-mu m-diameter particle). The effect of mass scaling, employed for speeding up the calculation, on the simulation results is examined in a test case of powder particles packed inside a box container. The calculated packing density for two different particle size distributions is validated against independent literature data for laser powder bed AM with AISI 316L stainless steel powder. The sensitivity of key input parameters (e.g., friction coefficient) is further evaluated in this test case. The powder packing model is then applied to a practical situation of binder jet AM involving rolling of multiple layers of IN718 powder particles onto a powder bed, for which the calculated packing density is also validated with independent literature data.
引用
下载
收藏
页码:1507 / 1520
页数:14
相关论文
共 50 条
  • [21] Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density
    Rausch, Alexander M.
    Kueng, Vera E.
    Pobel, Christoph
    Markl, Matthias
    Koerner, Carolin
    MATERIALS, 2017, 10 (10)
  • [22] Numerical simulation of the flow behavior and powder spreading mechanism in powder bed-based additive manufacturing
    Si, Liang
    Zhang, Tengfang
    Zhou, Mengyuan
    Li, Maoyuan
    Zhang, Yun
    Zhou, Huamin
    POWDER TECHNOLOGY, 2021, 394 : 1004 - 1016
  • [23] Understanding powder bed fusion additive manufacturing phenomena via numerical simulation
    Ferro, P.
    Romanin, L.
    Berto, F.
    FRATTURA ED INTEGRITA STRUTTURALE-FRACTURE AND STRUCTURAL INTEGRITY, 2020, Gruppo Italiano Frattura (53): : 252 - 284
  • [24] Multi-material model for the simulation of powder bed fusion additive manufacturing
    Kling, Vera E.
    Scherr, Robert
    Markl, Matthias
    Ko, Carolin
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 194
  • [25] A Lagrangian meshfree mesoscale simulation of powder bed fusion additive manufacturing of metals
    Fan, Zongyue
    Wang, Hao
    Huang, Zhida
    Liao, Huming
    Fan, Jiang
    Lu, Jian
    Liu, Chong
    Li, Bo
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (02) : 483 - 514
  • [26] Numerical Simulation of Random Packing of Spherical Particles for Powder-Based Additive Manufacturing
    Zhou, Jianhua
    Zhang, Yuwen
    Chen, J. K.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (03): : 0310041 - 0310048
  • [27] Effects of spreader geometry on powder spreading process in powder bed additive manufacturing
    Wang, Lin
    Yu, Aibing
    Li, Erlei
    Shen, Haopeng
    Zhou, Zongyan
    POWDER TECHNOLOGY, 2021, 384 : 211 - 222
  • [28] On thermal properties of metallic powder in laser powder bed fusion additive manufacturing
    Zhang, Shanshan
    Lane, Brandon
    Whiting, Justin
    Chou, Kevin
    JOURNAL OF MANUFACTURING PROCESSES, 2019, 47 : 382 - 392
  • [29] Influences of powder morphology and spreading parameters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing
    Mussatto, Andre
    Groarke, Robert
    O'Neill, Aidan
    Obeidi, Muhannad Ahmed
    Delaure, Yan
    Brabazon, Dermot
    ADDITIVE MANUFACTURING, 2021, 38
  • [30] The Environmental Impacts of Metal Powder Bed Additive Manufacturing
    Liao, Jiankan
    Cooper, Daniel R.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (03):