Convergence of formal morphisms of completions of complex spaces

被引:2
|
作者
Izumi, S [1 ]
机构
[1] Kinki Univ, Dept Math & Phys, Higashiosaka, Osaka 5778502, Japan
关键词
completion; formal morphisms; convergence; Gabrielov's theorem;
D O I
10.2969/jmsj/05130731
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a formal morphism between completions of complex spaces convergent if it comes from a holomorphic mapping between the complex spaces. We assume always that the source space is compact. Then a formal morphism is either convergent everywhere or nowhere, under very general conditions.
引用
收藏
页码:731 / 755
页数:25
相关论文
共 50 条
  • [31] Equivariant completions of affine spaces
    Arzhantsev, I. V.
    Zaitseva, Yu. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2022, 77 (04) : 571 - 650
  • [32] Completions of pro-spaces
    Daniel C. Isaksen
    Mathematische Zeitschrift, 2005, 250 : 113 - 143
  • [33] Completions, comonoids, and topological spaces
    Bucalo, A
    Rosolini, G
    ANNALS OF PURE AND APPLIED LOGIC, 2006, 137 (1-3) : 104 - 125
  • [34] CAUCHY COMPLETIONS OF NEOMETRIC SPACES
    KENTON, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A339 - A339
  • [35] Completions of partial metric spaces
    Ge, Xun
    Lin, Shou
    TOPOLOGY AND ITS APPLICATIONS, 2015, 182 : 16 - 23
  • [36] Closure spaces and completions of posets
    Zhao, Dongsheng
    SEMIGROUP FORUM, 2015, 90 (02) : 545 - 555
  • [37] Closure spaces and completions of posets
    Dongsheng Zhao
    Semigroup Forum, 2015, 90 : 545 - 555
  • [38] COMPLETIONS AND BALLS IN BANACH SPACES
    Papini, Pier Luigi
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (01): : 24 - 33
  • [39] Formal completions of Neron models for algebraic tori
    Demchenko, Oleg
    Gurevich, Alexander
    Xarles, Xavier
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 100 : 607 - 638
  • [40] On Betti numbers of the gluing of germs of formal complex spaces
    Freitas, Thiago H.
    Jorge Perez, Victor H.
    Miranda, Aldicio J.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (01) : 267 - 285