On Betti numbers of the gluing of germs of formal complex spaces

被引:1
|
作者
Freitas, Thiago H. [1 ]
Jorge Perez, Victor H. [2 ]
Miranda, Aldicio J. [3 ]
机构
[1] Univ Tecnol Fed Parana, Dept Math, BR-85053525 Guarapuava, Parana, Brazil
[2] Univ Sao Paulo ICMC, Dept Math, Sao Paulo, Brazil
[3] Univ Fed Uberlimdia FAMAT, Dept Math, Uberlandia, MG, Brazil
关键词
Betti numbers; gluing space; invariants; singularities; LOCAL-RINGS; EQUISINGULARITY; MULTIPLICITIES; TOR;
D O I
10.1002/mana.202000475
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the gluing of germs of formal complex spaces is also a formal complex space. Moreover, we study the Betti numbers of the gluing of formal complex spaces and, for instance, we show that the Betti numbers satisfy beta((x,0) )(i)(0) >= ((d)(i)), for all 1 <= i <= d, where (x, 0) is a d-dimensional germ of formal complex space given by a regular and a singular germ of formal complex spaces with the same dimension. In particular, this proves the Buchsbaum-Eisenbud-Horrocks conjecture for certain gluing of germs of formal complex spaces. Some formulas for the Betti numbers of the gluing of germs of formal complex spaces are given in terms of the invariant multiplicities, Euler obstruction, Milnor number, and polar multiplicities. As an application, some upper bounds for the Betti numbers of the gluing of some germs of complete intersection are provided, using recent progress on the Watanabe's conjecture.
引用
收藏
页码:267 / 285
页数:19
相关论文
共 50 条
  • [1] BETTI NUMBERS OF ALEXANDROV SPACES
    KOH, LK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) : 247 - 252
  • [2] Rational Betti numbers of configuration spaces
    Félix, Y
    Thomas, JC
    TOPOLOGY AND ITS APPLICATIONS, 2000, 102 (02) : 139 - 149
  • [3] Betti numbers of configuration spaces of surfaces
    Drummond-Cole, Gabriel C.
    Knudsen, Ben
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 367 - 393
  • [4] Betti numbers of spaces of closed groups
    Cartan, E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1928, 187 : 196 - 198
  • [5] BETTI NUMBERS OF ALMOST TACHIBANA SPACES AND SASAKIAN SPACES
    SATO, I
    TENSOR, 1971, 22 (01): : 87 - &
  • [6] Betti spectral gluing
    Ben-Zvi, David
    Nadler, David
    ADVANCES IN MATHEMATICS, 2021, 380
  • [7] On the growth of Betti numbers of locally symmetric spaces
    Abert, Miklos
    Bergeron, Nicolas
    Biringer, Ian
    Gelander, Tsachik
    Nikolov, Nikolay
    Raimbault, Jean
    Samet, Iddo
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (15-16) : 831 - 835
  • [8] Estimates for the Betti numbers of rationally elliptic spaces
    Pavlov, AV
    SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (06) : 1080 - 1085
  • [9] Betti numbers of stable map spaces to Grassmannians
    Bagnarol, Massimo
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (10) : 1869 - 1900
  • [10] Estimates for the Betti Numbers of Rationally Elliptic Spaces
    A. V. Pavlov
    Siberian Mathematical Journal, 2002, 43 : 1080 - 1085