Variable Selection in Additive Models Using P-Splines

被引:22
|
作者
Antoniadis, Anestis [1 ]
Gijbels, Irene [2 ,3 ]
Verhasselt, Anneleen [4 ]
机构
[1] Univ Grenoble 1, Lab Jean Kuntzmann, Grenoble, France
[2] Katholieke Univ Leuven, Dept Math, Louvain, Belgium
[3] Katholieke Univ Leuven, Leuven Stat Res Ctr LStat, Louvain, Belgium
[4] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
Additive modeling; Nonnegative garrote; Nonparametric smoothing; Penalized spline regression; Selection of variables; PENALIZED LIKELIHOOD; REGULARIZATION; REGRESSION; FLOW;
D O I
10.1080/00401706.2012.726000
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article extends the nonnegative garrote method to a component selection method in a nonparametric additive model in which each univariate function is estimated with P-splines. We also establish the consistency of the procedure. An advantage of P-splines is that the fitted function is represented in a rather small basis of B-splines. A numerical study illustrates the finite-sample performance of the method and includes a comparison with other methods. The nonnegative garrote method with P-splines has the advantage of being computationally fast and performs, with an appropriate parameter selection procedure implemented, overall very well. Real data analysis leads to interesting findings. Supplementary materials for this article (technical proofs, additional numerical results, R code) are available online.
引用
收藏
页码:425 / 438
页数:14
相关论文
共 50 条
  • [21] P-splines quantile regression estimation in varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    TEST, 2014, 23 (01) : 153 - 194
  • [22] P-splines quantile regression estimation in varying coefficient models
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    TEST, 2014, 23 : 153 - 194
  • [23] Semiparametric finite mixture of regression models with Bayesian P-splines
    Marco Berrettini
    Giuliano Galimberti
    Saverio Ranciati
    Advances in Data Analysis and Classification, 2023, 17 : 745 - 775
  • [24] Parsimonious time series clustering using P-splines
    Iorio, Carmela
    Frasso, Gianluca
    D'Ambrosio, Antonio
    Siciliano, Roberta
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 52 : 26 - 38
  • [25] LIMITS OF HK,P-SPLINES
    CHUI, CK
    SMITH, PW
    WARD, JD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (03) : 563 - 565
  • [26] Twenty years of P-splines
    Eilers, Paul H. C.
    Marx, Brian D.
    Durban, Maria
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2015, 39 (02) : 149 - 186
  • [27] Semiparametric finite mixture of regression models with Bayesian P-splines
    Berrettini, Marco
    Galimberti, Giuliano
    Ranciati, Saverio
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2023, 17 (03) : 745 - 775
  • [28] Practical Smoothing: The Joys of P-splines
    Podgorski, Krzysztof
    INTERNATIONAL STATISTICAL REVIEW, 2022, 90 (01) : 191 - 192
  • [29] Practical Smoothing: The Joys of P-splines
    Podgorski, Krzysztof
    INTERNATIONAL STATISTICAL REVIEW, 2022,
  • [30] Derivative curve estimation in longitudinal studies using P-splines
    Hernandez, Maria Alejandra
    Lee, Dae-Jin
    Rodriguez-Alvarez, Maria Xose
    Durban, Maria
    STATISTICAL MODELLING, 2023, 23 (5-6) : 424 - 440