Replication of G Quadruplex DNA

被引:113
|
作者
Lerner, Leticia Koch [1 ]
Sale, Julian E. [1 ]
机构
[1] MRC Lab Mol Biol, Francis Crick Ave, Cambridge CB2 0QH, England
关键词
G quadruplex; DNA replication; DNA helicases; DNA secondary structure; WERNER-SYNDROME HELICASE; EUKARYOTIC CMG HELICASE; DOUBLE-STRANDED DNA; ATAXIA GAA REPEATS; PROTEIN-A; TELOMERIC DNA; SECONDARY STRUCTURES; GENE-PRODUCT; BIOCHEMICAL-CHARACTERIZATION; TETRAMOLECULAR QUADRUPLEX;
D O I
10.3390/genes10020095
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Interaction of Replication Protein-A with G-Quadruplex Structures
    Ray, Sujay
    Qureshi, Mohammad Haroon
    Malcom, Dominic
    Celik, Ugur
    Balci, Hamza
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 71A - 71A
  • [22] Mapping DNA G-quadruplex structures
    Eytan Zlotorynski
    Nature Reviews Molecular Cell Biology, 2015, 16 (9) : 518 - 518
  • [23] G-quadruplex DNA: A Longer Story
    Monsen, Robert C.
    Trent, John O.
    Chaires, Jonathan B.
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, : 3242 - 3252
  • [24] G-quadruplex DNA: myth or reality?
    Riou, JF
    Gomez, D
    Lemarteleur, T
    Trentesaux, C
    BULLETIN DU CANCER, 2003, 90 (04) : 305 - 313
  • [25] Responsive DNA G-quadruplex micelles
    Cozzoli, Liliana
    Gjonaj, Lorina
    Stuart, Marc C. A.
    Poolman, Bert
    Roelfes, Gerard
    CHEMICAL COMMUNICATIONS, 2018, 54 (03) : 260 - 263
  • [26] Simultaneous G-Quadruplex DNA Logic
    Bader, Antoine
    Cockroft, Scott L.
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (19) : 4820 - 4824
  • [27] New G-quadruplex DNA structures
    Shivachev, Boris L.
    Dimowa, Louiza T.
    Nikolova, Rosica P.
    Sbirkova, Hristina I.
    Tzvetanova, Lilia
    Hristoff, Peter
    Radoslavov, Georgi
    Tzanko, Doukov I.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S247 - S247
  • [28] DNA REPLICATION Pif1 overcomes a quadruplex hurdle
    Schuldt, Alison
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2011, 12 (07) : 403 - 403
  • [29] DNA G-quadruplex structures mold the DNA methylome
    Shi-Qing Mao
    Avazeh T. Ghanbarian
    Jochen Spiegel
    Sergio Martínez Cuesta
    Dario Beraldi
    Marco Di Antonio
    Giovanni Marsico
    Robert Hänsel-Hertsch
    David Tannahill
    Shankar Balasubramanian
    Nature Structural & Molecular Biology, 2018, 25 : 951 - 957
  • [30] DNA G-quadruplex structures mold the DNA methylome
    Mao, Shi-Qing
    Ghanbarian, Avazeh T.
    Spiegel, Jochen
    Cuesta, Sergio Martinez
    Beraldi, Dario
    Di Antonio, Marco
    Marsico, Giovanni
    Hansel-Hertsch, Robert
    Tannahill, David
    Balasubramanian, Shankar
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2018, 25 (10) : 951 - +