DNA G-quadruplex structures mold the DNA methylome

被引:166
|
作者
Mao, Shi-Qing [1 ]
Ghanbarian, Avazeh T. [1 ,4 ]
Spiegel, Jochen [1 ]
Cuesta, Sergio Martinez [1 ,2 ]
Beraldi, Dario [1 ,5 ]
Di Antonio, Marco [2 ]
Marsico, Giovanni [1 ]
Hansel-Hertsch, Robert [1 ]
Tannahill, David [1 ]
Balasubramanian, Shankar [1 ,2 ,3 ]
机构
[1] Canc Res UK Cambridge Inst, Li Ka Shing Ctr, Cambridge, England
[2] Univ Cambridge, Dept Chem, Cambridge, England
[3] Univ Cambridge, Sch Clin Med, Cambridge, England
[4] European Bioinformat Inst EMBL EBI, Wellcome Trust Genome Campus, Hinxton, England
[5] Univ Glasgow, Inst Canc Sci, Glasgow, Lanark, Scotland
基金
欧盟地平线“2020”; 英国惠康基金;
关键词
DE-NOVO METHYLATION; CPG ISLANDS; BINDING; ELEMENTS; DNMT3A; ROLES; RNA;
D O I
10.1038/s41594-018-0131-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Control of DNA methylation level is critical for gene regulation, and the factors that govern hypomethylation at CpG islands (CGIs) are still being uncovered. Here, we provide evidence that G-quadruplex (G4) DNA secondary structures are genomic features that influence methylation at CGIs. We show that the presence of G4 structure is tightly associated with CGI hypomethylation in the human genome. Surprisingly, we find that these G4 sites are enriched for DNA methyltransferase 1 (DNMT1) occupancy, which is consistent with our biophysical observations that DNMT1 exhibits higher binding affinity for G4s as compared to duplex, hemi-methylated, or single-stranded DNA. The biochemical assays also show that the G4 structure itself, rather than sequence, inhibits DNMT1 enzymatic activity. Based on these data, we propose that G4 formation sequesters DNMT1 thereby protecting certain CGIs from methylation and inhibiting local methylation.
引用
收藏
页码:951 / +
页数:9
相关论文
共 50 条
  • [1] DNA G-quadruplex structures mold the DNA methylome
    Shi-Qing Mao
    Avazeh T. Ghanbarian
    Jochen Spiegel
    Sergio Martínez Cuesta
    Dario Beraldi
    Marco Di Antonio
    Giovanni Marsico
    Robert Hänsel-Hertsch
    David Tannahill
    Shankar Balasubramanian
    [J]. Nature Structural & Molecular Biology, 2018, 25 : 951 - 957
  • [2] Mapping DNA G-quadruplex structures
    Eytan Zlotorynski
    [J]. Nature Reviews Molecular Cell Biology, 2015, 16 (9) : 518 - 518
  • [3] New G-quadruplex DNA structures
    Shivachev, Boris L.
    Dimowa, Louiza T.
    Nikolova, Rosica P.
    Sbirkova, Hristina I.
    Tzvetanova, Lilia
    Hristoff, Peter
    Radoslavov, Georgi
    Tzanko, Doukov I.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S247 - S247
  • [4] G-quadruplex DNA structures - Variations on a theme
    Simonsson, T
    [J]. BIOLOGICAL CHEMISTRY, 2001, 382 (04) : 621 - 628
  • [5] Existence and consequences of G-quadruplex structures in DNA
    Murat, Pierre
    Balasubramanian, Shankar
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2014, 25 : 22 - 29
  • [6] G-quadruplex DNA structures and their relevance in radioprotection
    Kumari, Nitu
    Raghavan, Sathees C.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2021, 1865 (05):
  • [7] DNA secondary structures: stability and function of G-quadruplex structures
    Matthew L. Bochman
    Katrin Paeschke
    Virginia A. Zakian
    [J]. Nature Reviews Genetics, 2012, 13 : 770 - 780
  • [8] DNA secondary structures: stability and function of G-quadruplex structures
    Bochman, Matthew L.
    Paeschke, Katrin
    Zakian, Virginia A.
    [J]. NATURE REVIEWS GENETICS, 2012, 13 (11) : 770 - 780
  • [9] Click Chemistry for the Identification of G-Quadruplex Structures: Discovery of a DNA-RNA G-Quadruplex
    Xu, Yan
    Suzuki, Yuta
    Komiyama, Makoto
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (18) : 3281 - 3284
  • [10] G-quadruplex is in human DNA
    [J]. Chemical and Engineering News, 2002, 80 (35):