A Time-Domain Meshless Method Without Discretization in Time

被引:0
|
作者
Wang, Jun-Feng [1 ]
Chen, Zhizhang [1 ,2 ]
Peng, Cheng [1 ]
Li, Jinyan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 611731, Peoples R China
[2] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4, Canada
基金
中国国家自然科学基金;
关键词
Analytical solution; discretization in time; eigenmodes; explicit method; node-based meshless method; numerical stability; wave equation; STABLE FDTD METHOD; SPATIAL FINITE-DIFFERENCE; EXPLICIT;
D O I
10.1109/LMWC.2020.2987733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose a new time-domain meshless method without discretization in time based on eigenexpansions of numerical solutions. As a result, numerical time-stepping is not required, and its associated errors are eliminated. Analytical solutions of the radial point interpolation meshless (RPIM) method are derived, and the solutions become always stable. In other words, electric and magnetic field values are available at any time, making late-time electromagnetic field analysis convenient and efficient. Numerical experiments are conducted to verify the effectiveness and accuracy of the proposed method.
引用
收藏
页码:545 / 548
页数:4
相关论文
共 50 条
  • [1] Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method
    Ala, Guido
    Francomano, Elisa
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (03) : 898 - 912
  • [2] The Meshless Radial Point Interpolation Method for Time-Domain Electromagnetics
    Kaufmann, Thomas
    Fumeaux, Christophe
    Vahldieck, Ruediger
    [J]. 2008 IEEE MTT-S International Microwave Symposium Digest, Vols 1-4, 2008, : 61 - 64
  • [3] A Time-Domain RBF Meshless Method for Electromagnetic Transient Analysis
    Khalef, R.
    Grine, F.
    Benhabiles, M. T.
    Riabi, M. L.
    [J]. 2016 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2016,
  • [4] Towards the Development of an Unconditionally Stable Time-Domain Meshless Method
    Yu, Yiqiang
    Chen, Zhizhang
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (03) : 578 - 586
  • [5] Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method
    Guido Ala
    Elisa Francomano
    [J]. Journal of Scientific Computing, 2015, 62 : 898 - 912
  • [6] Stable Discretization of Time-Domain Solvers
    Roth, Thomas E.
    Chew, Weng C.
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 1454 - 1454
  • [7] Time-domain vector potential technique for the meshless radial point interpolation method
    Shaterian, Zahra
    Kaufmann, Thomas
    Fumeaux, Christophe
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (12) : 1830 - 1838
  • [8] Time-Domain Meshless Method Simulation of Metasurfaces With Generalized Sheet Transition Conditions
    Shams, Sheyda
    Mohajeri, Farzad
    Movahhedi, Masoud
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2023, 22 (07): : 1612 - 1616
  • [9] Recent developments of the meshless radial point interpolation method for time-domain electromagnetics
    Kaufmann, T.
    Yu, Y.
    Engstroem, C.
    Chen, Z.
    Fumeaux, C.
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (5-6) : 468 - 489
  • [10] Mixed Discretization of the Time-Domain MFIE at Low Frequencies
    Ulku, H. Arda
    Bogaert, Ignace
    Cools, Kristof
    Andriulli, Francesco P.
    Bagci, Hakan
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 : 1565 - 1568