Bayesian Matching of Unlabeled Point Sets Using Procrustes and Configuration Models

被引:10
|
作者
Kenobi, Kim [1 ]
Dryden, Ian L. [2 ]
机构
[1] Univ Nottingham, Sch Biosci, Nottingham NG7 2RD, Leics, England
[2] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
来源
BAYESIAN ANALYSIS | 2012年 / 7卷 / 03期
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Gibbs; Markov chain Monte Carlo; Metropolis-Hastings; molecule; protein; Procrustes; size; shape; ALIGNMENT; SHAPE;
D O I
10.1214/12-BA718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of matching unlabeled point sets using Bayesian inference is considered. Two recently proposed models for the likelihood are compared, based on the Procrustes size-and-shape and the full configuration. Bayesian inference is carried out for matching point sets using Markov chain Monte Carlo simulation. An improvement to the existing Procrustes algorithm is proposed which improves convergence rates, using occasional large jumps in the burn-in period. The Procrustes and configuration methods are compared in a simulation study and using real data,where it is of interest to estimate the strengths of matches between protein binding sites. The performance of both methods is generally quite similar, and a connection between the two models is made using a Laplace approximation.
引用
收藏
页码:547 / 565
页数:19
相关论文
共 50 条
  • [31] Inexact Bayesian point pattern matching for linear transformations
    Christmas, J.
    Everson, R. M.
    Bell, J.
    Winlove, C. P.
    PATTERN RECOGNITION, 2014, 47 (10) : 3265 - 3275
  • [32] Variational Bayesian Approximation for Affine Point Set Matching
    Xiang Lin
    Qu Hanbing
    Tao Haijun
    Wang Jiaqiang
    CHINESE JOURNAL OF ELECTRONICS, 2015, 24 (02) : 349 - 354
  • [33] MCMC Computations for Bayesian Mixture Models Using Repulsive Point Processes
    Beraha, Mario
    Argiento, Raffaele
    Moller, Jesper
    Guglielmi, Alessandra
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 422 - 435
  • [34] MODELS AND PRIMITIVES FROM POINT SETS
    KLINGER, A
    BASSETT, E
    FOX, W
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1985, 521 : 176 - 183
  • [35] Graphical models and point pattern matching
    Caetano, Tiberio S.
    Caelli, Terry
    Schuurmans, Dale
    Barone, Dante A. C.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (10) : 1646 - 1663
  • [36] 3D Hand Posture Recognition from Small Unlabeled Point Sets
    Gardner, Andrew
    Duncan, Christian A.
    Kano, Jinko
    Selmie, Rastko
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 164 - 169
  • [37] Point Pattern Matching for 2-D Point Sets with Regular Structure
    Manninen, Tapio
    Ronkka, Risto
    Huttunen, Heikki
    IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 156 - 165
  • [38] Point Pattern Matching Algorithm for Planar Point Sets under Euclidean Transform
    Wang, Xiaoyun
    Zhang, Xianquan
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [39] Point Matching in the Presence of Outliers in Both Point Sets: A Concave Optimization Approach
    Lian, Wei
    Zhang, Lei
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 352 - 359
  • [40] Subject choice in educational data sets by using principal component and procrustes analysis
    Khan, Ansar
    Jana, Mrityunjoy
    Bera, Subhankar
    Das, Arosikha
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2016, 2 (04)