DESIGN REQUIREMENTS FOR FLOATING OFFSHORE WIND TURBINES

被引:0
|
作者
Chen, Xiaohong [1 ]
Yu, Qing [1 ]
机构
[1] Amer Bur Shipping, Houston, TX 77060 USA
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents the research in support of the development of design requirements for floating offshore wind turbines (FOWTs). An overview of technical challenges in the design of FOWTs is discussed, followed by a summary of the case studies using representative FOWT concepts. Three design concepts, including a Spar-type, a TLP-type and a Semisubmersible-type floating support structure carrying a 5-MW offshore wind turbine, are selected for the case studies. Both operational and extreme storm conditions on the US Outer Continental Shelf (OCS) are considered. A state-of-the-art simulation technique is employed to perform fully coupled aero-hydro-servo-elastic analysis using the integrated FOWT model. This technique can take into account dynamic interactions among the turbine Rotor-Nacelle Assembly (RNA), turbine control system, floating support structure and stationkeeping system. The relative importance of various design parameters and their impact on the development of design criteria are evaluated through parametric analyses. The paper also introduces the design requirements put forward in the recently published ABS Guide for Building and Classing Floating Offshore Wind Turbine Installations (ABS, 2013).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Floating offshore wind turbines port requirements for construction
    Crowle, A. P.
    Thies, P. R.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2022, 236 (04) : 1047 - 1056
  • [2] SIMULATION REQUIREMENTS AND RELEVANT LOAD CONDITIONS IN THE DESIGN OF FLOATING OFFSHORE WIND TURBINES
    Guzman, Ricardo Faerron
    Mueller, Kolja
    Vita, Luca
    Cheng, Po Wen
    [J]. PROCEEDINGS OF THE ASME 37TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2018, VOL 10, 2018,
  • [3] Floating offshore wind turbines
    Sclavounos, Paul
    [J]. MARINE TECHNOLOGY SOCIETY JOURNAL, 2008, 42 (02) : 39 - 43
  • [4] Wind spectral characteristics on strength design of floating offshore wind turbines
    Udoh, Ikpoto E.
    Zou, Jun
    [J]. OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2018, 8 (03): : 281 - 312
  • [5] STRUCTURE DESIGN AND ASSESSMENT OF A FLOATING FOUNDATION FOR OFFSHORE WIND TURBINES
    Ye, Qi
    Cheng, Shanshan
    Kim, Boksun
    Collins, Keri
    Iglesias, Gregorio
    [J]. PROCEEDINGS OF THE ASME 2ND INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, 2019, 2020,
  • [6] CONCEPT DESIGN AND ANALYSIS OF WIND-TRACING FLOATING OFFSHORE WIND TURBINES
    Li, Shuijin
    Lamei, Azin
    Hayatdavoodi, Masoud
    Wong, Carlos
    [J]. PROCEEDINGS OF THE ASME 2ND INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, 2019, 2020,
  • [7] SIMULATION-LENGTH REQUIREMENTS IN THE LOADS ANALYSIS OF OFFSHORE FLOATING WIND TURBINES
    Haid, Lorenz
    Stewart, Gordon
    Jonkman, Jason
    Robertson, Amy
    Lackner, Matthew
    Matha, Denis
    [J]. PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 8, 2013,
  • [8] Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines
    Haider, Rizwan
    Li, Xin
    Shi, Wei
    Lin, Zaibin
    Xiao, Qing
    Zhao, Haisheng
    [J]. ENERGIES, 2024, 17 (17)
  • [9] Uncertainty models for the structural design of floating offshore wind turbines: A review
    Ramezani, Mahyar
    Choe, Do-Eun
    Heydarpour, Khashayar
    Koo, Bonjun
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 185
  • [10] A NEW METHOD FOR THE DESIGN AND COUPLED ANALYSIS OF FLOATING OFFSHORE WIND TURBINES
    Veen, Daniel
    Pahos, Spiro J.
    Meng, Shawn
    Dillenburg, Simon
    [J]. PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 8, 2023,