DESIGN REQUIREMENTS FOR FLOATING OFFSHORE WIND TURBINES

被引:0
|
作者
Chen, Xiaohong [1 ]
Yu, Qing [1 ]
机构
[1] Amer Bur Shipping, Houston, TX 77060 USA
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents the research in support of the development of design requirements for floating offshore wind turbines (FOWTs). An overview of technical challenges in the design of FOWTs is discussed, followed by a summary of the case studies using representative FOWT concepts. Three design concepts, including a Spar-type, a TLP-type and a Semisubmersible-type floating support structure carrying a 5-MW offshore wind turbine, are selected for the case studies. Both operational and extreme storm conditions on the US Outer Continental Shelf (OCS) are considered. A state-of-the-art simulation technique is employed to perform fully coupled aero-hydro-servo-elastic analysis using the integrated FOWT model. This technique can take into account dynamic interactions among the turbine Rotor-Nacelle Assembly (RNA), turbine control system, floating support structure and stationkeeping system. The relative importance of various design parameters and their impact on the development of design criteria are evaluated through parametric analyses. The paper also introduces the design requirements put forward in the recently published ABS Guide for Building and Classing Floating Offshore Wind Turbine Installations (ABS, 2013).
引用
收藏
页数:8
相关论文
共 50 条
  • [21] OPTIMIZATION OF SEMI-SUBMERSIBLE HULL DESIGN FOR FLOATING OFFSHORE WIND TURBINES
    Hsu, I-Jen
    Ivanov, Glib
    Ma, Kai-Tung
    Huang, Zheng-Zhang
    Wu, Hua-Tung
    Huang, Yun-Tzu
    Chou, Mike
    [J]. PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [22] Incidence of wind spectrum and turbulence intensity on the design of mooring systems for floating offshore wind turbines
    Piscopo, V.
    Scamardella, A.
    [J]. OCEAN ENGINEERING, 2023, 290
  • [23] Scale model technology for floating offshore wind turbines
    Bayati, Ilmas
    Belloli, Marco
    Bernini, Luca
    Giberti, Hermes
    Zasso, Alberto
    [J]. IET RENEWABLE POWER GENERATION, 2017, 11 (09) : 1120 - 1126
  • [24] Heave Plates with Holes for Floating Offshore Wind Turbines
    Ciba, Ewelina
    Dymarski, Pawel
    Grygorowicz, Miroslaw
    [J]. POLISH MARITIME RESEARCH, 2022, 29 (01) : 26 - 33
  • [25] Dynamically installed anchors for floating offshore wind turbines
    Lieng, Jon Tore
    Sturm, Hendrik
    Hassel, Karl Kristian
    [J]. OCEAN ENGINEERING, 2022, 266
  • [26] OFFSHORE FLOATING WIND TURBINES ARE ASKING FOR NDE 4.0
    Singh, Ripi
    [J]. MATERIALS EVALUATION, 2023, 81 (09) : 14 - 16
  • [27] Identification of Vibration Modes in Floating Offshore Wind Turbines
    Serrano-Antonanazas, Mikel
    Sierra-Garcia, Jesus-Enrique
    Santos, Matilde
    Tomas-Rodriguez, Maria
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (10)
  • [28] Characterization of the unsteady aerodynamics of offshore floating wind turbines
    Sebastian, T.
    Lackner, M. A.
    [J]. WIND ENERGY, 2013, 16 (03) : 339 - 352
  • [29] Study on Gyroscopic Effect of Floating Offshore Wind Turbines
    Jia-hao Chen
    Ai-guo Pei
    Peng Chen
    Zhi-qiang Hu
    [J]. China Ocean Engineering, 2021, 35 : 201 - 214
  • [30] Study on Gyroscopic Effect of Floating Offshore Wind Turbines
    Chen Jia-hao
    Pei Ai-guo
    Chen Peng
    Hu Zhi-qiang
    [J]. CHINA OCEAN ENGINEERING, 2021, 35 (02) : 201 - 214