Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines

被引:0
|
作者
Haider, Rizwan [1 ,2 ]
Li, Xin [1 ,2 ,3 ]
Shi, Wei [2 ]
Lin, Zaibin [4 ]
Xiao, Qing [5 ]
Zhao, Haisheng [1 ,2 ]
机构
[1] Dalian Univ Technol, Fac Infrastruct Engn, Sch Hydraul Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Ningbo Inst, Ningbo 315032, Peoples R China
[4] Univ Aberdeen, Sch Engn, Aberdeen AB24 3UE, Scotland
[5] Univ Strathclyde, Dept Naval Architecture Ocean & Marine Engn, Glasgow G4 0LZ, Scotland
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
computational fluid dynamics; floating offshore wind turbines; uncoupled CFD models; partially coupled CFD models; fully coupled CFD models; ATMOSPHERIC BOUNDARY-LAYER; AERO-HYDRODYNAMIC ANALYSIS; PLATFORM PITCHING MOTION; LARGE-EDDY SIMULATION; NUMERICAL WAVE TANK; TUNED MASS DAMPER; AERODYNAMIC PERFORMANCE; CFD SIMULATION; UNSTEADY AERODYNAMICS; TURBULENCE MODELS;
D O I
10.3390/en17174269
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The growing interest in renewable energy solutions for sustainable development has significantly advanced the design and analysis of floating offshore wind turbines (FOWTs). Modeling FOWTs presents challenges due to the considerable coupling between the turbine's aerodynamics and the floating platform's hydrodynamics. This review paper highlights the critical role of computational fluid dynamics (CFD) in enhancing the design and performance evaluation of FOWTs. It thoroughly evaluates various CFD approaches, including uncoupled, partially coupled, and fully coupled models, to address the intricate interactions between aerodynamics, hydrodynamics, and structural dynamics within FOWTs. Additionally, this paper reviews a range of software tools for FOWT numerical analysis. The research emphasizes the need to focus on the coupled aero-hydro-elastic models of FOWTs, especially in response to expanding rotor diameters. Further research should focus on developing nonlinear eddy viscosity models, refining grid techniques, and enhancing simulations for realistic sea states and wake interactions in floating wind farms. The research aims to familiarize new researchers with essential aspects of CFD simulations for FOWTs and to provide recommendations for addressing challenges.
引用
下载
收藏
页数:37
相关论文
共 50 条
  • [1] A Review of High-Fidelity Computational Fluid Dynamics for Floating Offshore Wind Turbines
    Xu, Shun
    Xue, Yingjie
    Zhao, Weiwen
    Wan, Decheng
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [2] Computational Fluid Dynamics Analysis of Floating Offshore Wind Turbines in Severe Pitching Conditions
    Ortolani, Andrea
    Persico, Giacomo
    Drofelnik, Jernej
    Jackson, Adrian
    Campobasso, M. Sergio
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [3] Computational Fluid Dynamics (CFD) applications in Floating Offshore Wind Turbine (FOWT) dynamics: A review
    Zhang, Wenzhe
    Calderon-Sanchez, Javier
    Duque, Daniel
    Souto-Iglesias, Antonio
    APPLIED OCEAN RESEARCH, 2024, 150
  • [4] DESIGN REQUIREMENTS FOR FLOATING OFFSHORE WIND TURBINES
    Chen, Xiaohong
    Yu, Qing
    PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 8, 2013,
  • [5] Uncertainty models for the structural design of floating offshore wind turbines: A review
    Ramezani, Mahyar
    Choe, Do-Eun
    Heydarpour, Khashayar
    Koo, Bonjun
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 185
  • [6] Floating offshore wind turbines
    Sclavounos, Paul
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2008, 42 (02) : 39 - 43
  • [7] Nonlinear hydrodynamics of floating offshore wind turbines: A review
    Zeng, Xinmeng
    Shao, Yanlin
    Feng, Xingya
    Xu, Kun
    Jin, Ruijia
    Li, Huajun
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 191
  • [8] A review of modelling techniques for floating offshore wind turbines
    Otter, Aldert
    Murphy, Jimmy
    Pakrashi, Vikram
    Robertson, Amy
    Desmond, Cian
    WIND ENERGY, 2022, 25 (05) : 831 - 857
  • [9] Review of control technologies for floating offshore wind turbines
    Lopez-Queija, Javier
    Robles, Eider
    Jugo, Josu
    Alonso-Quesada, Santiago
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [10] Wind spectral characteristics on strength design of floating offshore wind turbines
    Udoh, Ikpoto E.
    Zou, Jun
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2018, 8 (03): : 281 - 312