Fundamental solution to the equation system of two-velocity hydrodynamics

被引:0
|
作者
Imomnazarov, KK
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:26 / 27
页数:2
相关论文
共 50 条
  • [1] The Fundamental Solution of the Steady-State Two-Velocity Hydrodynamics Equation with Phase Equilibrium Pressure in the Dissipative Approximation
    Imomnazarov, B. Kh.
    Imomnazarov, Sh. Kh.
    Mamatqulov, M.M.
    Khudainazarov, B.B.
    Journal of Applied and Industrial Mathematics, 2022, 16 (03) : 403 - 408
  • [2] The Fundamental Solution of the Steady-State Two-Velocity Hydrodynamics Equation with Phase Equilibrium Pressure in the Dissipative Approximation
    Imomnazarov B.K.
    Imomnazarov S.K.
    Mamatqulov M.M.
    Khudainazarov B.B.
    Journal of Applied and Industrial Mathematics, 2022, 16 (3) : 403 - 408
  • [3] THE CLASSICAL SOLUTION OF ONE OVERDETERMINED STATIONARY SYSTEM ARISING IN TWO-VELOCITY HYDRODYNAMICS
    Imomnazarov, Sherzad Kholmatgonovich
    Urev, Mikhail Vadimovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1621 - 1629
  • [4] On one system of the Burgers equations arising in the two-velocity hydrodynamics
    Imomnazarov, Kholmatzhon
    Mamasoliyev, Baxtier
    Vasiliev, Georgy
    ALGEBRA, ANALYSIS AND QUANTUM PROBABILITY, 2016, 697
  • [5] A Boundary Value Problem for an Overdetermined Steady System in Two-Velocity Hydrodynamics
    Urev M.V.
    Imomnazarov K.K.
    Tang J.-G.
    Numerical Analysis and Applications, 2017, 10 (4) : 347 - 357
  • [6] Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases
    Vasiliev, Georgy Sergeevich
    Tang, Jian-Gang
    Mamasoliev, Baxtier Zhuramirzaevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 585 - 602
  • [7] External Boundary Value Problem for One Overdetermined System Arising in Two-Velocity Hydrodynamics
    M. Urev
    R. Bahramov
    Sh. Imomnazarov
    I. Iskandarov
    Journal of Mathematical Sciences, 2024, 284 (2) : 279 - 286
  • [8] Two-velocity hydrodynamics in fluid mechanics: global existence for 2D case
    Tan, Wenke
    NONLINEARITY, 2021, 34 (02) : 964 - 988
  • [9] Application of Megrabov's Differential Identities to the Two-velocity Hydrodynamics Equations with One Pressure
    Zhabborov, N. M.
    Korobov, P., V
    Imomnazarov, K. K.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2012, 5 (02): : 156 - 163
  • [10] Local Uniqueness in the Dynamical Inverse Problem for a Two-Velocity System
    M. I. Belishev
    S. A. Ivanov
    Journal of Mathematical Sciences, 2003, 117 (2) : 3910 - 3917