Fundamental solution to the equation system of two-velocity hydrodynamics

被引:0
|
作者
Imomnazarov, KK
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:26 / 27
页数:2
相关论文
共 50 条
  • [21] Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems
    Bresch, Didier
    Giovangigli, Vincent
    Zatorska, Ewelina
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04): : 762 - 800
  • [22] The time-dependent Ginzburg-Landau equation for the two-velocity difference model
    Wu Shu-Zhen
    Cheng Rong-Jun
    Ge Hong-Xia
    CHINESE PHYSICS B, 2011, 20 (08)
  • [23] The two-velocity dynamical system: Boundary control of waves and inverse problems
    Belishev, M
    Blagovestchenskii, A
    Ivanov, S
    WAVE MOTION, 1997, 25 (01) : 83 - 107
  • [24] The two-velocity dynamical system: Boundary control of waves and inverse problems
    St. Petersburg Dept. Steklov M., 27, Fontanka, 191011 Saint Petersburg, Russia
    Wave Mot., 1 (83-107):
  • [25] Two-velocity dynamics of compressible heterophase media
    Perepechko, Yu V.
    Sorokin, K. E.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2013, 22 (03) : 241 - 246
  • [26] On an Inverse Problem for a One-Dimensional Two-Velocity Dynamical System
    Pestov A.L.
    Journal of Mathematical Sciences, 2016, 214 (3) : 344 - 371
  • [27] Two-velocity elasticity theory and facet growth
    A. F. Andreev
    L. A. Melnikovsky
    Journal of Experimental and Theoretical Physics, 2001, 93 : 1261 - 1269
  • [28] Two-velocity elasticity theory and facet growth
    Andreev, AF
    Melnikovsky, LA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2001, 93 (06) : 1261 - 1269
  • [29] The Neumann series as a fundamental solution of the two-dimensional convection–diffusion equation with variable velocity
    Mariela Castillo
    Henry Power
    Journal of Engineering Mathematics, 2008, 62 : 189 - 202
  • [30] Two-velocity dynamics of compressible heterophase media
    Yu. V. Perepechko
    K. E. Sorokin
    Journal of Engineering Thermophysics, 2013, 22 : 241 - 246