Two-velocity hydrodynamics in fluid mechanics: global existence for 2D case

被引:2
|
作者
Tan, Wenke [1 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Minist Educ, Key Lab Comp & Stochast Math, Changsha 410081, Hunan, Peoples R China
关键词
global strong solutions; global weak solutions; two-velocity hydrodynamics; mixture; ghost effect; WELL-POSEDNESS; NUMBER; EQUATIONS; MOTION;
D O I
10.1088/1361-6544/abb51a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a compressible-incompressible two-velocity hydrodynamic system studied by Bresch et al (2015 J. Math. Pure Appl. 104 762-800) and Lions (1996 Mathematical Topics in Fluid Mechanics (Oxford: OUP)). When the density rho is a small perturbation of a constant, we establish a priori estimates by using some delicate structure of the nonlinear terms and Hardy space. By using these a priori estimates, we prove the existence of global strong solutions and weak solutions. Our results do not require any constraint between the viscosity and the conductivity and improve the results of Bresch et al (2015) and Lions (1996) in the two-dimensional case. As an application of our results we also establish global strong solutions and weak solutions for a model of gaseous mixture and the ghost effect system.
引用
收藏
页码:964 / 988
页数:25
相关论文
共 50 条
  • [1] Two-velocity hydrodynamics in fluid mechanics: Part II Existence of global κ-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities
    Bresch, Didier
    Desjardins, Benoit
    Zatorska, Ewelina
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04): : 801 - 836
  • [2] Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems
    Bresch, Didier
    Giovangigli, Vincent
    Zatorska, Ewelina
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04): : 762 - 800
  • [3] Fundamental solution to the equation system of two-velocity hydrodynamics
    Imomnazarov, KK
    DOKLADY AKADEMII NAUK, 1996, 346 (01) : 26 - 27
  • [4] On one system of the Burgers equations arising in the two-velocity hydrodynamics
    Imomnazarov, Kholmatzhon
    Mamasoliyev, Baxtier
    Vasiliev, Georgy
    ALGEBRA, ANALYSIS AND QUANTUM PROBABILITY, 2016, 697
  • [5] A Boundary Value Problem for an Overdetermined Steady System in Two-Velocity Hydrodynamics
    Urev M.V.
    Imomnazarov K.K.
    Tang J.-G.
    Numerical Analysis and Applications, 2017, 10 (4) : 347 - 357
  • [6] THE CLASSICAL SOLUTION OF ONE OVERDETERMINED STATIONARY SYSTEM ARISING IN TWO-VELOCITY HYDRODYNAMICS
    Imomnazarov, Sherzad Kholmatgonovich
    Urev, Mikhail Vadimovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1621 - 1629
  • [7] Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases
    Vasiliev, Georgy Sergeevich
    Tang, Jian-Gang
    Mamasoliev, Baxtier Zhuramirzaevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 585 - 602
  • [8] External Boundary Value Problem for One Overdetermined System Arising in Two-Velocity Hydrodynamics
    M. Urev
    R. Bahramov
    Sh. Imomnazarov
    I. Iskandarov
    Journal of Mathematical Sciences, 2024, 284 (2) : 279 - 286
  • [9] Application of Megrabov's Differential Identities to the Two-velocity Hydrodynamics Equations with One Pressure
    Zhabborov, N. M.
    Korobov, P., V
    Imomnazarov, K. K.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2012, 5 (02): : 156 - 163
  • [10] Global isomorphism approach: Attractive Yukawa fluid, 2D case
    Katts, A.
    Kulinskii, V.
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 388