On Using Maximum a Posteriori Probability Based on a Bayesian Model for Oscillometric Blood Pressure Estimation

被引:10
|
作者
Lee, Soojeong [1 ]
Jeon, Gwanggil [2 ]
Lee, Gangseong [3 ]
机构
[1] Hanyang Univ, Dept Elect & Comp Engn, Seoul 133791, South Korea
[2] Incheon Natl Univ, Dept Embedded Syst Engn, Inchon 406772, South Korea
[3] Kwangwoon Univ, Sch Gen Educ, Seoul 139701, South Korea
来源
SENSORS | 2013年 / 13卷 / 10期
基金
新加坡国家研究基金会;
关键词
oscillometric blood pressure estimation; systolic and diastolic ratios; Bayesian model; maximum amplitude algorithm;
D O I
10.3390/s131013609
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The maximum amplitude algorithm (MAA) is generally utilized in the estimation of the pressure values, and it uses heuristically obtained ratios of systolic and diastolic oscillometric amplitude to the mean arterial pressure (known as systolic and diastolic ratios) in order to estimate the systolic and diastolic pressures. This paper proposes a Bayesian model to estimate the systolic and diastolic ratios. These ratios are an improvement over the single fixed systolic and diastolic ratios used in the algorithms that are available in the literature. The proposed method shows lower mean difference (MD) with standard deviation (SD) compared to the MAA for both SBP and DBP consistently in all the five measurements.
引用
收藏
页码:13609 / 13623
页数:15
相关论文
共 50 条
  • [1] Blood Pressure Estimation Using Maximum Slope of Oscillometric Pulses
    Mafi, Majid
    Rajan, Sreeraman
    Bolic, Miodrag
    Groza, Voicu Z.
    Dajani, Hilmi R.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 3239 - 3242
  • [2] Model-Based Oscillometric Blood Pressure Estimation
    Forouzanfar, Mohamad
    Dajani, Hilmi R.
    Groza, Voicu Z.
    Bolic, Miodrag
    2014 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2014, : 443 - 448
  • [3] Bayesian fusion algorithm for improved oscillometric blood pressure estimation
    Forouzanfar, Mohamad
    Dajani, Hilmi R.
    Groza, Voicu Z.
    Bolic, Miodrag
    Rajan, Sreeraman
    Batkin, Izmail
    MEDICAL ENGINEERING & PHYSICS, 2016, 38 (11) : 1300 - 1304
  • [4] Learning Bayesian networks using the constrained maximum a posteriori probability method
    Yang, Yu
    Gao, Xiaoguang
    Guo, Zhigao
    Chen, Daqing
    PATTERN RECOGNITION, 2019, 91 : 123 - 134
  • [5] Hierarchical Motion Estimation Algorithm based on Maximum a Posteriori Probability
    Choi, Dooseop
    An, Taeg-Hyun
    Kim, Taejeong
    2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [6] Disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm
    Lee, SH
    Park, JI
    Inoue, S
    Lee, CW
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (07): : 1367 - 1376
  • [7] Model-Based Mean Arterial Pressure Estimation Using Simultaneous Electrocardiogram and Oscillometric Blood Pressure Measurements
    Forouzanfar, Mohamad
    Ahmad, Saif
    Batkin, Izmail
    Dajani, Hilmi R.
    Groza, Voicu Z.
    Bolic, Miodrag
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (09) : 2443 - 2452
  • [8] Low-level vision edge detector by using Bayesian decision and maximum a posteriori probability estimation theory
    Barzohar, M
    Han, DJ
    Cooper, DB
    BAYESIAN INFERENCE FOR INVERSE PROBLEMS, 1998, 3459 : 224 - 235
  • [9] Oscillometric Blood Pressure Estimation Based on Maximum Amplitude Algorithm Employing Gaussian Mixture Regression
    Lee, Soojeong
    Chang, Joon-Hyuk
    Nam, Sang Won
    Lim, Chungsoo
    Rajan, Sreeraman
    Dajani, Hilmi R.
    Groza, Voicu Z.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2013, 62 (12) : 3387 - 3389
  • [10] Blood Pressure Estimation using Oscillometric Pulse Morphology
    Mafi, Majid
    Rajan, Sreeraman
    Bolic, Miodrag
    Groza, Voicu Z.
    Dajani, Hilmi R.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2492 - 2496