On derandomization and average-case complexity of monotone functions

被引:3
|
作者
Karakostas, George [2 ]
Kinne, Jeff [1 ]
van Melkebeek, Dieter [3 ]
机构
[1] Indiana State Univ, Terre Haute, IN 47809 USA
[2] McMaster Univ, Hamilton, ON L8S 4L8, Canada
[3] Univ Wisconsin, Madison, WI 53706 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Derandomization; Monotone circuits; Monotone functions; Randomized algorithm; Pseudorandom generators; Average-case complexity; BOOLEAN FUNCTIONS; HARDNESS; BOUNDS;
D O I
10.1016/j.tcs.2012.02.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate whether circuit lower bounds for monotone circuits can be used to derandomize randomized monotone circuits. We show that, in fact, any derandomization of randomized monotone computations would derandomize all randomized computations, whether monotone or not. We prove similar results in the settings of pseudorandom generators and average-case hard functions - that a pseudorandom generator secure against monotone circuits is also secure with somewhat weaker parameters against general circuits, and that an average-case hard function for monotone circuits is also hard with somewhat weaker parameters for general circuits. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [31] ON THE AVERAGE-CASE COMPLEXITY OF SELECTING THE KTH BEST
    YAO, AC
    YAO, FF
    SIAM JOURNAL ON COMPUTING, 1982, 11 (03) : 428 - 447
  • [32] Average-case complexity without the black swans
    Amelunxen, Dennis
    Lotz, Martin
    JOURNAL OF COMPLEXITY, 2017, 41 : 82 - 101
  • [33] On the Complexity of Searching in Trees: Average-Case Minimization
    Jacobs, Tobias
    Cicalese, Ferdinando
    Laber, Eduardo
    Molinaro, Marco
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2010, 6198 : 527 - 539
  • [34] Relations between Average-Case and Worst-Case Complexity
    A. Pavan
    N. V. Vinodchandran
    Theory of Computing Systems, 2008, 42 : 596 - 607
  • [35] Pseudorandomness and average-case complexity via uniform reductions
    Trevisan, Luca
    Vadhan, Salil
    COMPUTATIONAL COMPLEXITY, 2007, 16 (04) : 331 - 364
  • [36] Average-case bounds for the complexity of path-search
    Pippenger, N
    ADVANCES IN SWITCHING NETWORKS, 1998, 42 : 1 - 13
  • [37] Average-case complexity and decision problems in group theory
    Kapovich, I
    Myasnikov, A
    Schupp, P
    Shpilrain, V
    ADVANCES IN MATHEMATICS, 2005, 190 (02) : 343 - 359
  • [38] The Value of Help Bits in Randomized and Average-Case Complexity
    Salman Beigi
    Omid Etesami
    Amin Gohari
    computational complexity, 2017, 26 : 119 - 145
  • [39] Relations between average-case and worst-case complexity
    Pavan, A
    Vinodchandran, NV
    FUNDAMENTALS OF COMPUTATIONAL THEORY, PROCEEDINGS, 2005, 3623 : 422 - 432
  • [40] Relations between average-case and worst-case complexity
    Pavan, A.
    Vinodchandran, N. V.
    THEORY OF COMPUTING SYSTEMS, 2008, 42 (04) : 596 - 607