On derandomization and average-case complexity of monotone functions

被引:3
|
作者
Karakostas, George [2 ]
Kinne, Jeff [1 ]
van Melkebeek, Dieter [3 ]
机构
[1] Indiana State Univ, Terre Haute, IN 47809 USA
[2] McMaster Univ, Hamilton, ON L8S 4L8, Canada
[3] Univ Wisconsin, Madison, WI 53706 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Derandomization; Monotone circuits; Monotone functions; Randomized algorithm; Pseudorandom generators; Average-case complexity; BOOLEAN FUNCTIONS; HARDNESS; BOUNDS;
D O I
10.1016/j.tcs.2012.02.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate whether circuit lower bounds for monotone circuits can be used to derandomize randomized monotone circuits. We show that, in fact, any derandomization of randomized monotone computations would derandomize all randomized computations, whether monotone or not. We prove similar results in the settings of pseudorandom generators and average-case hard functions - that a pseudorandom generator secure against monotone circuits is also secure with somewhat weaker parameters against general circuits, and that an average-case hard function for monotone circuits is also hard with somewhat weaker parameters for general circuits. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [1] Bounds for the average-case complexity of monotone Boolean functions
    Chashkin A.V.
    Discrete Mathematics and Applications, 2017, 27 (03): : 137 - 142
  • [2] On the average-case complexity of underdetermined functions
    Chashkin, Aleksandr V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2018, 28 (04): : 201 - 221
  • [3] Average-case complexity of partial Boolean functions
    Chashkin, A
    STOCHASTIC ALGORITHMS: FOUNDATIONS AND APPLICATIONS, 2003, 2827 : 146 - 156
  • [4] Average-case complexity of elementary Boolean functions
    Chashkin, A.V.
    Discrete Mathematics and Applications, 2001, 11 (01): : 71 - 81
  • [5] Average-case Complexity
    Trevisan, Luca
    PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 11 - 11
  • [6] Average-Case Complexity
    Bogdanov, Andrej
    Trevisan, Luca
    FOUNDATIONS AND TRENDS IN THEORETICAL COMPUTER SCIENCE, 2006, 2 (01): : 1 - 111
  • [7] On the average-case complexity of Shellsort
    Vitanyi, Paul
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (02) : 354 - 363
  • [8] STRUCTURAL AVERAGE-CASE COMPLEXITY
    SCHULER, R
    YAMAKAMI, T
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 652 : 128 - 139
  • [9] STRONG AVERAGE-CASE CIRCUIT LOWER BOUNDS FROM NONTRIVIAL DERANDOMIZATION
    Chen, Lijie
    Ren, Hanlin
    SIAM JOURNAL ON COMPUTING, 2022, 51 (03) : 115 - 173
  • [10] Distributional problems and the average-case complexity
    GROUP-BASED CRYPTOGRAPHY, 2008, : 99 - 115