iTRAQ-based proteomic analysis reveals changes in response to sodium nitroprusside treatment in soybean sprouts

被引:10
|
作者
Jiao, Caifeng [1 ]
Gu, Zhenxin [2 ]
机构
[1] Xuzhou Univ Technol, Coll Food Technol, Xuzhou 221000, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium nitroprusside; iTRAQ; Antioxidant system; Lipoxygenase; Flavonoid; HSPs; NITRIC-OXIDE; OXIDATIVE STRESS; TOLERANCE; PROTEIN; ROOTS; BIOSYNTHESIS; ACTIVATION; EXPRESSION; LEAVES; CELLS;
D O I
10.1016/j.foodchem.2018.02.054
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In recent years, nitric oxide (NO) has been considered a plant signaling compound involved in antioxidant systems and flavonoid production enhancement. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate NO donor sodium nitroprusside treatment-induced proteomic changes in soybean sprouts. Among the 3033 proteins identified, compared with the control, sodium nitroprusside treatment up- and down-regulated 256 proteins. These proteins were involved in antioxidant system pathways, such as the thioredoxin, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and lipoxygenase (LOX) pathways, including allene oxide synthase and lipoxygenase. In addition, heat shock proteins (HSPs) and flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to sodium nitroprusside treatment.
引用
收藏
页码:372 / 376
页数:5
相关论文
共 50 条
  • [41] iTRAQ-based proteomic analysis of resistant Nicotiana tabacum in response to Bemisia tabaci infestation
    Song-tao Zhang
    Yue Long
    Song-jie Zhang
    Ning Li
    De-xin Chen
    Hong-fang Jia
    Hong-ying Zhang
    Yong-xia Yang
    Arthropod-Plant Interactions, 2019, 13 : 505 - 516
  • [42] iTRAQ-based proteomic analysis of adaptive response in the regenerating limb of the Cynops orientalis newt
    Geng, Xiao-Fang
    Gu, Jian-Lin
    Zang, Xia-Yan
    Sun, Jing-Yan
    Li, Peng-Fei
    Zhang, Fu-Chun
    Xu, Cun-Shuan
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2015, 59 (10-12): : 487 - 496
  • [43] iTRAQ-Based Quantitative Proteomic Analysis of Spirulina platensis in Response to Low Temperature Stress
    Li, Qingye
    Chang, Rong
    Sun, Yijun
    Li, Bosheng
    PLOS ONE, 2016, 11 (11):
  • [44] iTRAQ-based quantitative proteomic analysis of the response of Hylotelephium erythrostictum leaves to salt stress
    Zhao, Xueqi
    Chen, Zhixin
    Leng, Pingsheng
    Hu, Zenghui
    SCIENTIA HORTICULTURAE, 2020, 264
  • [45] iTRAQ-based quantitative proteomic analysis ofSargassum fusiformein response to high temperature stress
    Liu, Lijie
    Lin, Lidong
    Ma, Zengling
    Wang, Guangce
    Wu, Mingjiang
    AQUACULTURE RESEARCH, 2021, 52 (01) : 185 - 195
  • [46] Author Correction: iTRAQ-based quantitative analysis reveals proteomic changes in Chinese cabbage (Brassica rapa L.) in response to Plasmodiophora brassicae infection
    Mei Lan
    Guoliang Li
    Jingfeng Hu
    Hongli Yang
    Liqin Zhang
    Xuezhong Xu
    Jiajia Liu
    Jiangming He
    Rifei Sun
    Scientific Reports, 10
  • [47] iTRAQ-Based Proteomic Analysis of Spontaneous Achilles Tendon Rupture
    Qianman, Bayixiati
    Jiasharete, Tuomilisi
    Badalihan, Ayinazi
    Mamately, Abuduhilil
    Yeerbo, Naertai
    Bahesutihan, Yemenlehan
    Wupuer, Aikeremu
    Aisaiding, Amuding
    Wuerliebieke, Jianati
    Jialihasi, Ayidaer
    Li, Ping
    Jielile, Jiasharete
    JOURNAL OF PROTEOME RESEARCH, 2024, 24 (01) : 65 - 76
  • [48] iTRAQ-based proteomic analysis of endotoxin tolerance induced by lipopolysaccharide
    Zhang, Qian
    Hu, Yingchun
    Zhang, Jing
    Deng, Cunliang
    MOLECULAR MEDICINE REPORTS, 2019, 20 (01) : 584 - 592
  • [49] iTRAQ-Based Quantitative Proteomic Analysis Reveals Toxicity Mechanisms in Chlamys farreri Exposed to Okadaic Acid
    Wang, Xin
    Wang, Dan
    Zhang, Tianyu
    Zhang, Qianqian
    Zhao, Jianmin
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [50] iTRAQ-Based Quantitative Proteomic Analysis of Cotton Roots and Leaves Reveals Pathways Associated with Salt Stress
    Chen, Tingting
    Zhang, Lei
    Shang, Haihong
    Liu, Shaodong
    Peng, Jun
    Gong, Wankui
    Shi, Yuzhen
    Zhang, Siping
    Li, Junwen
    Gong, Juwu
    Ge, Qun
    Liu, Aiying
    Ma, Huijuan
    Zhao, Xinhua
    Yuan, Youlu
    PLOS ONE, 2016, 11 (02):