iTRAQ-based proteomic analysis reveals changes in response to sodium nitroprusside treatment in soybean sprouts

被引:10
|
作者
Jiao, Caifeng [1 ]
Gu, Zhenxin [2 ]
机构
[1] Xuzhou Univ Technol, Coll Food Technol, Xuzhou 221000, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium nitroprusside; iTRAQ; Antioxidant system; Lipoxygenase; Flavonoid; HSPs; NITRIC-OXIDE; OXIDATIVE STRESS; TOLERANCE; PROTEIN; ROOTS; BIOSYNTHESIS; ACTIVATION; EXPRESSION; LEAVES; CELLS;
D O I
10.1016/j.foodchem.2018.02.054
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In recent years, nitric oxide (NO) has been considered a plant signaling compound involved in antioxidant systems and flavonoid production enhancement. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate NO donor sodium nitroprusside treatment-induced proteomic changes in soybean sprouts. Among the 3033 proteins identified, compared with the control, sodium nitroprusside treatment up- and down-regulated 256 proteins. These proteins were involved in antioxidant system pathways, such as the thioredoxin, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and lipoxygenase (LOX) pathways, including allene oxide synthase and lipoxygenase. In addition, heat shock proteins (HSPs) and flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to sodium nitroprusside treatment.
引用
收藏
页码:372 / 376
页数:5
相关论文
共 50 条
  • [21] iTRAQ-based quantitative proteomic analysis reveals metabolic changes in overwintering Scylla paramamosain at two different salinities
    Zhou, Junming
    Li, Na
    Wang, Huan
    Wang, Chunlin
    Mu, Changkao
    AQUACULTURE RESEARCH, 2021, 52 (08) : 3757 - 3770
  • [22] iTRAQ-based quantitative analysis reveals proteomic changes in Chinese cabbage (Brassica rapa L.) in response to Plasmodiophora brassicae infection
    Mei Lan
    Guoliang Li
    Jingfeng Hu
    Hongli Yang
    Liqin Zhang
    Xuezhong Xu
    Jiajia Liu
    Jiangming He
    Rifei Sun
    Scientific Reports, 9
  • [23] iTRAQ-Based Quantitative Proteomic Analysis Reveals Changes in Metabolite Biosynthesis in Monascus purpureus in Response to a Low-Frequency Magnetic Field
    Zhang, Jialan
    Liu, Yingbao
    Li, Li
    Gao, Mengxiang
    TOXINS, 2018, 10 (11):
  • [24] iTRAQ-based proteomic analysis reveals potential serum biomarkers of allergic and nonallergic asthma
    Nieto-Fontarigo, Juan Jose
    Gonzalez-Barcala, Francisco Javier
    Andrade-Bulos, Luis Juan
    San-Jose, Maria Esther
    Cruz, Maria Jesus
    Valdes-Cuadrado, Luis
    Crujeiras, Rosa Maria
    Arias, Pilar
    Salgado, Francisco Javier
    ALLERGY, 2020, 75 (12) : 3171 - 3183
  • [25] iTRAQ-based proteomic and physiological analyses of broccoli sprouts in response to exogenous melatonin with ZnSO4 stress
    Yin, Yongqi
    Liu, Yin
    Cheng, Chao
    Yang, Zhengfei
    Luo, Zhenlan
    Fang, Weiming
    RSC ADVANCES, 2021, 11 (20) : 12336 - 12347
  • [26] iTRAQ-based quantitative proteomic analysis reveals multiple effects of Emodin to Haemophilus parasuis
    Li, Li
    Tian, Ye
    Yu, Jiankang
    Song, Xu
    Jia, Renyong
    Cui, Qiankun
    Tong, Wenzhi
    Zou, Yuanfeng
    Li, Lixia
    Yin, Lizi
    Liang, Xiaoxia
    He, Changliang
    Yue, Guizhou
    Ye, Gang
    Zhao, Ling
    Shi, Fei
    Lv, Cheng
    Cao, Sanjie
    Yin, Zhongqiong
    JOURNAL OF PROTEOMICS, 2017, 166 : 39 - 47
  • [27] An iTRAQ-based proteomic analysis reveals dysregulation of neocortical synaptopodin in Lewy body dementias
    Datta, Arnab
    Chai, Yuek Ling
    Tan, Jing Min
    Lee, Jasinda H.
    Francis, Paul T.
    Chen, Christopher P.
    Sze, Siu Kwan
    Lai, Mitchell K. P.
    MOLECULAR BRAIN, 2017, 10 : 36
  • [28] iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice
    Xi, Min
    Wu, Wenge
    Xu, Youzun
    Zhou, Yongjin
    Chen, Gang
    Ji, Yalan
    Sun, Xueyuan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 154 : 622 - 635
  • [29] iTRAQ-Based Proteomic Analysis Reveals Protein Profile in Plasma from Children with Autism
    Shen, Liming
    Zhang, Kaoyuan
    Feng, Chengyun
    Chen, Youjiao
    Li, Shuiming
    Iqbal, Javed
    Liao, Liping
    Zhao, Yuxi
    Zhai, Jian
    PROTEOMICS CLINICAL APPLICATIONS, 2018, 12 (03)
  • [30] An iTRAQ-based proteomic analysis reveals dysregulation of neocortical synaptopodin in Lewy body dementias
    Arnab Datta
    Yuek Ling Chai
    Jing Min Tan
    Jasinda H. Lee
    Paul T. Francis
    Christopher P. Chen
    Siu Kwan Sze
    Mitchell K. P. Lai
    Molecular Brain, 10