Physical Properties of Particulate Matter Emitted from Combustion of Coals of Various Ranks in O2/N2 and O2/CO2 Environments

被引:30
|
作者
Kazanc, Feyza [1 ]
Levendis, Yiannis A. [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
FINE ASH FORMATION; PULVERIZED-COAL; SIZE DISTRIBUTION; PARTICLE FORMATION; SINGLE PARTICLES; MINERAL MATTER; FRAGMENTATION; MIXTURES; AIR; EMISSIONS;
D O I
10.1021/ef301087r
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work examined the particulate emissions from pulverized coals burning under either conventional or oxyfuel combustion conditions. Oxyfuel combustion is a process that takes place in O-2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases into the boiler; this is done to moderate the high temperatures caused by the elevated oxygen partial pressure therein. In this study, combustion took place in a laboratory laminar-flow drop-tube furnace (DTF) in environments containing various mole fractions of oxygen in either nitrogen or carbon dioxide background gases. A bituminous coal, a sub-bituminous coal, and a lignite were burned at a DTF temperature of 1400 K. Trimodal ash particle size distributions were observed with peaks in the submicrometer region (similar to 0.2 mu m), as well as in the supermicrometer region (similar to 5 mu m and >10 mu m). Both submicrometer and supermicrometer particulate emission yields of all three coals were typically lower in O-2/CO2 than in O-2/N-2 environments. Emission yields typically increased with increasing oxygen concentration in the furnace, with an exception noted at moderate oxygen mole fractions (20%-30%) in CO2, where significant amounts of unburned carbon were detected. Submicrometer particulate yields were found to be comparable in the effluents of all three coals, independently of their ash contents, whereas supermicrometer particulate yields were nearly analogous to the ash contents of the three coals. Scanning electron microscopy (SEM) revealed that submicrometer particles were spherical, whereas supermicrometer particles were often of irregular shapes, fractured spheres, and spheres with small particles attached to their surface.
引用
收藏
页码:7127 / 7139
页数:13
相关论文
共 50 条
  • [21] Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres
    Cruz, Glauber
    Crnkovic, Paula Manoel
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 123 (02) : 1003 - 1011
  • [22] Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres
    Glauber Cruz
    Paula Manoel Crnkovic
    Journal of Thermal Analysis and Calorimetry, 2016, 123 : 1003 - 1011
  • [23] Experimental Investigation and Comparison of Pulverized Coal Combustion in CO2/O2− and N2/O2−Atmospheres
    Johannes Hees
    Diego Zabrodiec
    Anna Massmeyer
    Martin Habermehl
    Reinhold Kneer
    Flow, Turbulence and Combustion, 2016, 96 : 417 - 431
  • [24] Numerical study of the O2/CO2, O2/CO2/N2, and O2/N2-syngas MILD combustion: Effects of oxidant temperature, O2 mole fraction, and fuel blends
    Shaker, Ahmad
    Hashemi, Seyed Abdolmehdi
    Fordoei, E. Ebrahimi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (79) : 30909 - 30929
  • [25] ReaxFF Study of Ethanol Oxidation in O2/N2 and O2/CO2 Environments at High Temperatures
    Arvelos, Sarah
    Hori, Carla Eponina
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (02) : 700 - 713
  • [26] Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres
    Diez, Luis I.
    Garcia-Mariaca, Alexander
    Canalis, Paula
    Llera, Eva
    ENERGY, 2023, 284
  • [27] Ignition and Combustion Characteristics of Different Rank Coals in O2/CO2 Environments
    Zhou, Yuegui
    Chu, Wei
    Gu, Guangjin
    Xu, Yangyang
    Wendt, Jost O. L.
    CLEANER COMBUSTION AND SUSTAINABLE WORLD, 2012, : 868 - 874
  • [28] CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres
    Tu, Yaojie
    Xu, Mingchen
    Zhou, Dezhi
    Wang, Qingxiang
    Yang, Wenming
    Liu, Hao
    APPLIED ENERGY, 2019, 240 : 1003 - 1013
  • [29] Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres
    Li, Lin
    Duan, Lunbo
    Tong, Shuai
    Anthony, Edward John
    FUEL PROCESSING TECHNOLOGY, 2019, 186 : 8 - 17
  • [30] Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres
    He, Yizhuo
    Luo, Jianghui
    Li, Yangguang
    Jia, Huiqiao
    Wang, Feng
    Zou, Chun
    Zheng, Chuguang
    ENERGY & FUELS, 2017, 31 (10) : 11404 - 11412