Single-cell RNA-seq reveals early heterogeneity during aging in yeast

被引:9
|
作者
Wang, Jincheng [1 ]
Sang, Yuchen [1 ]
Jin, Shengxian [1 ]
Wang, Xuezheng [2 ,3 ,4 ]
Azad, Gajendra Kumar [5 ,6 ]
McCormick, Mark A. [7 ,8 ]
Kennedy, Brian K. [5 ,9 ,10 ]
Li, Qing [2 ,3 ]
Wang, Jianbin [11 ]
Zhang, Xiannian [12 ]
Zhang, Yi [1 ]
Huang, Yanyi [1 ,13 ,14 ]
机构
[1] Peking Univ, Biomed Pioneering Innovat Ctr BIOPIC, Peking Tsinghua Ctr Life Sci, Beijing Adv Innovat Ctr Genom ICG,Sch Life Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Life Sci, State Key Lab Prot & Plant Gene Res, Beijing, Peoples R China
[3] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing, Peoples R China
[4] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore
[6] Patna Univ, Dept Zool, Patna, Bihar, India
[7] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Hlth Sci Ctr, Albuquerque, NM 87131 USA
[8] Autophagy Inflammat & Metab Ctr Biomed Res Excell, Albuquerque, NM USA
[9] Natl Univ Singapore, Yong Loo Lin Sch Med, Hlth Longev Programme, Singapore, Singapore
[10] Natl Univ Hlth Syst, Ctr Hlth Longev, Singapore, Singapore
[11] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Sch Life Sci, Beijing, Peoples R China
[12] Capital Med Univ, Beijing Adv Innovat Ctr Human Brain Protect, Sch Basic Med Sci, Beijing 100069, Peoples R China
[13] Peking Univ, Coll Chem, Analyt Chem, Beijing, Peoples R China
[14] Shenzhen Bay Lab, Inst Cell Anal, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
early heterogeneity; iron transport; mitochondrial dysfunction; single cell RNA sequencing; yeast aging; GENE-EXPRESSION; IRON; INSTABILITY; RESPONSES; NOISE; LEADS;
D O I
10.1111/acel.13712
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The budding yeast Saccharomyces cerevisiae (S. cerevisiae) has relatively short lifespan and is genetically tractable, making it a widely used model organism in aging research. Here, we carried out a systematic and quantitative investigation of yeast aging with single-cell resolution through transcriptomic sequencing. We optimized a single-cell RNA sequencing (scRNA-seq) protocol to quantitatively study the whole transcriptome profiles of single yeast cells at different ages, finding increased cell-to-cell transcriptional variability during aging. The single-cell transcriptome analysis also highlighted key biological processes or cellular components, including oxidation-reduction process, oxidative stress response (OSR), translation, ribosome biogenesis and mitochondrion that underlie aging in yeast. We uncovered a molecular marker of FIT3, indicating the early heterogeneity during aging in yeast. We also analyzed the regulation of transcription factors and further characterized the distinctive temporal regulation of the OSR by YAP1 and proteasome activity by RPN4 during aging in yeast. Overall, our data profoundly reveal early heterogeneity during aging in yeast and shed light on the aging dynamics at the single cell level.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation
    Shang, Zhouchun
    Chen, Dongsheng
    Wang, Quanlei
    Wang, Shengpeng
    Deng, Qiuting
    Wu, Liang
    Liu, Chuanyu
    Ding, Xiangning
    Wang, Shiyou
    Zhong, Jixing
    Zhang, Doudou
    Cai, Xiaodong
    Zhu, Shida
    Yang, Huanming
    Liu, Longqi
    Fink, J. Lynn
    Chen, Fang
    Liu, Xiaoqing
    Gao, Zhengliang
    Xu, Xun
    GIGASCIENCE, 2018, 7 (11): : 1 - 19
  • [32] Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging
    Kimmel, Jacob C.
    Penland, Lolita
    Rubinstein, Nimrod D.
    Hendrickson, David G.
    Kelley, David R.
    Rosenthal, Adam Z.
    GENOME RESEARCH, 2019, 29 (12) : 2088 - 2103
  • [33] Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development
    Su, Xianbin
    Shi, Yi
    Zou, Xin
    Lu, Zhao-Ning
    Xie, Gangcai
    Yang, Jean Y. H.
    Wu, Chong-Chao
    Cui, Xiao-Fang
    He, Kun-Yan
    Luo, Qing
    Qu, Yu-Lan
    Wang, Na
    Wang, Lan
    Han, Ze-Guang
    BMC GENOMICS, 2017, 18
  • [34] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Yunfan Li
    Dan Zhang
    Mouxing Yang
    Dezhong Peng
    Jun Yu
    Yu Liu
    Jiancheng Lv
    Lu Chen
    Xi Peng
    Nature Communications, 14
  • [35] Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development
    Xianbin Su
    Yi Shi
    Xin Zou
    Zhao-Ning Lu
    Gangcai Xie
    Jean Y. H. Yang
    Chong-Chao Wu
    Xiao-Fang Cui
    Kun-Yan He
    Qing Luo
    Yu-Lan Qu
    Na Wang
    Lan Wang
    Ze-Guang Han
    BMC Genomics, 18
  • [36] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Li, Yunfan
    Zhang, Dan
    Yang, Mouxing
    Peng, Dezhong
    Yu, Jun
    Liu, Yu
    Lv, Jiancheng
    Chen, Lu
    Peng, Xi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [37] Heterogeneity of Mesp1+mesoderm revealed by single-cell RNA-seq
    Chan, Sunny Sun-Kin
    Chan, Howe H. W.
    Kyba, Michael
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 474 (03) : 469 - 475
  • [38] Zom-biecoming: Single-Cell RNA-seq reveals senescence-like features of alveolar macrophages during aging
    Wu, Yue
    Zhu, Bibo
    Zhang, Ruixuan
    Wang, Zheng
    Goplen, Nick P.
    Gao, Xiaochen
    Li, Ying
    Cadani, Amber
    Braciale, Thomas J.
    Sun, Jie
    JOURNAL OF IMMUNOLOGY, 2021, 206
  • [39] Single-cell RNA-seq variant analysis for exploration of genetic heterogeneity in cancer
    Erik Fasterius
    Mathias Uhlén
    Cristina Al-Khalili Szigyarto
    Scientific Reports, 9
  • [40] Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data
    Coral Fustero-Torre
    María José Jiménez-Santos
    Santiago García-Martín
    Carlos Carretero-Puche
    Luis García-Jimeno
    Vadym Ivanchuk
    Tomás Di Domenico
    Gonzalo Gómez-López
    Fátima Al-Shahrour
    Genome Medicine, 13