Compression of hyperspectral images based on Tucker decomposition and CP decomposition

被引:2
|
作者
Yang, Lei [1 ,2 ,3 ]
Zhou, Jinsong [1 ,2 ,3 ]
Jing, Juanjuan [1 ,2 ,3 ]
Wei, Lidong [1 ,3 ]
Li, Yacan [1 ,3 ]
He, Xiaoying [1 ,3 ]
Feng, Lei [1 ,3 ]
Nie, Boyang [1 ,3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
IMAGING SPECTROMETER; DESIGN;
D O I
10.1364/JOSAA.468167
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hyperspectral imagers are developing towards high resolution, high detection sensitivity, broad spectra, and wide coverage, which means that hyperspectral data are getting more and more substantial. This brings a great challenge to data storage and real-time transmission of hyperspectral data. A compression method based on Tucker decomposition and CANDECOMP/PARAFAC decomposition (TD-CP) is proposed. The hyperspectral data are treated as a third-order tensor. First, TD is performed on the hyperspectral data to obtain a core tensor and three factor matrices, and then CP decomposition is performed on the core tensor. Compared with principal component analysis (PCA)+JPEG2000, TD, and CP, TD-CP can retain spatial information and spectral information better at the same time, and running time is shorter. (c) 2022 Optica Publishing Group
引用
下载
收藏
页码:1815 / 1822
页数:8
相关论文
共 50 条
  • [31] Denoising and dimensionality reduction based on PARAFAC decomposition for hyperspectral images
    Yan Rong-hua
    Peng Jin-ye
    Wen De-sheng
    Ma Dong-mei
    OPTICAL SENSING AND IMAGING TECHNOLOGIES AND APPLICATIONS, 2018, 10846
  • [32] Spectral Decomposition Methods for Hyperspectral Image Compression
    Jacobs, Paul
    Miller, Christian
    Wolff, Jared
    Sun, Xiuhong
    Coronado, Patrick L.
    Zhang, Guo-Qiang
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3529 - +
  • [33] HYPERSPECTRAL IMAGE CLASSIFICATION USING TENSOR CP DECOMPOSITION
    Jouni, Mohamad
    Dalla Mura, Mauro
    Comon, Pierre
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1164 - 1167
  • [34] Deep neural network compression by Tucker decomposition with nonlinear response
    Liu, Ye
    Ng, Michael K.
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [35] Hyperspectral Image Superresolution Using Unidirectional Total Variation With Tucker Decomposition
    Xu, Ting
    Huang, Ting-Zhu
    Deng, Liang-Jian
    Zhao, Xi-Le
    Huang, Jie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4381 - 4398
  • [36] Smooth Coupled Tucker Decomposition for Hyperspectral Image Super-Resolution
    Bu, Yuanyang
    Zhao, Yongqiang
    Xue, Jize
    Chan, Jonathan Cheung-Wai
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 238 - 248
  • [37] Distributed Nonlocal Coupled Hierarchical Tucker Decomposition for Hyperspectral Image Fusion
    Zheng, Peng
    Sun, Jin
    Xu, Yang
    Zhang, Yi
    Wei, Zhihui
    Plaza, Javier
    Plaza, Antonio
    Wu, Zebin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [38] Lossless Hyperspectral Image Compression Using Binary Tree Based Decomposition
    Shahriyar, Shampa
    Paul, Manoranjan
    Murshed, Manzur
    Ali, Mortuza
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 428 - 435
  • [39] Compression of Head-Related Transfer Function Based on Tucker and Tensor Train Decomposition
    Wang, Jing
    Liu, Min
    Xie, Xiang
    Kuang, Jingming
    IEEE ACCESS, 2019, 7 : 39639 - 39651
  • [40] Adaptive subspace decomposition and classification for hyperspectral images
    Zhang, Y
    Zhang, JP
    Jin, M
    Desai, MD
    CHINESE JOURNAL OF ELECTRONICS, 2000, 9 (01): : 82 - 88