HYPERSPECTRAL IMAGE CLASSIFICATION USING TENSOR CP DECOMPOSITION

被引:0
|
作者
Jouni, Mohamad [1 ]
Dalla Mura, Mauro [1 ]
Comon, Pierre [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, Gipsa Lab, F-38000 Grenoble, France
关键词
Remote Sensing Image; Mathematical Morphology; Attribute Profiles; Tensor Decomposition; Scene Classification; SPECTRAL-SPATIAL CLASSIFICATION;
D O I
10.1109/igarss.2019.8898346
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Image classification has been at the core of remote sensing applications. Optical remote sensing imaging systems naturally acquire images with spectral features corresponding to pixels. Spectral classification ignores the spatial distribution of the data which is becoming more relevant with the development of spatial resolution sensors, and many works aim to incorporate spatial features based on neighborhood through for example, Mathematical Morphology (MM). Additionally, one could stack multiple morphological transformations of the image resulting in a highly complex block of data. Since classification is a tool that requires a matrix of samples and features, and simply stacking the different sets of features can lead to the problem of high dimensionality, we propose a way to create a matrix of low dimensional feature space by modeling the data as tensors and thanks to Canonical Polyadic (CP) decomposition. Experiments on real image show the effectiveness of the proposed method.
引用
收藏
页码:1164 / 1167
页数:4
相关论文
共 50 条
  • [1] Nonlocal Coupled Tensor CP Decomposition for Hyperspectral and Multispectral Image Fusion
    Xu, Yang
    Wu, Zebin
    Chanussot, Jocelyn
    Comon, Pierre
    Wei, Zhihui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 348 - 362
  • [2] Nonnegative Tensor CP Decomposition of Hyperspectral Data
    Veganzones, Miguel A.
    Cohen, Jeremy E.
    Farias, Rodrigo Cabral
    Chanussot, Jocelyn
    Comon, Pierre
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05): : 2577 - 2588
  • [3] Classification of Hyperspectral Images as Tensors Using Nonnegative CP Decomposition
    Jouni, Mohamad
    Dalla Mura, Mauro
    Comon, Pierre
    [J]. MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING, ISMM 2019, 2019, 11564 : 189 - 201
  • [4] Probability-weighted tensor robust PCA with CP decomposition for hyperspectral image restoration
    Zhang, Aiyi
    Liu, Fulai
    Du, Ruiyan
    [J]. SIGNAL PROCESSING, 2023, 209
  • [5] Color image and video restoration using tensor CP decomposition
    Bentbib, A. H.
    Khouia, A.
    Sadok, H.
    [J]. BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1257 - 1278
  • [6] Color image and video restoration using tensor CP decomposition
    A. H. Bentbib
    A. Khouia
    H. Sadok
    [J]. BIT Numerical Mathematics, 2022, 62 : 1257 - 1278
  • [7] Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification
    Tian, Long
    Du, Qian
    Younan, Nicolas
    Kopriva, Ivica
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3656 - 3659
  • [8] Spatial-spectral classification of hyperspectral image via group tensor decomposition
    Zhao, Guangzhe
    Tu, Bing
    Fei, Hongyan
    Li, Nanying
    Yang, Xianchang
    [J]. NEUROCOMPUTING, 2018, 316 : 68 - 77
  • [9] Hyperspectral image, video compression using sparse tucker tensor decomposition
    Das, Samiran
    [J]. IET IMAGE PROCESSING, 2021, 15 (04) : 964 - 973
  • [10] Hyperspectral Image Denoising Using Tensor Decomposition under Multiple Constraints
    Li, Zhen
    Zhao, Baojun
    Wang, Wenzheng
    Wang, Baoxian
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (06) : 949 - 953