Acyclic edge coloring of planar graphs with girth at least 5

被引:7
|
作者
Hou, Jianfeng [1 ]
Wang, Weitao [1 ]
Zhang, Xiaoran [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar graph; Girth; Acyclic edge coloring; Critical; SPARSE HESSIAN MATRICES; CHROMATIC INDEXES;
D O I
10.1016/j.dam.2013.06.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper edge coloring of a graph G is acyclic if there is no bichromatic cycle in G. The acyclic chromatic index of G, denoted chi(a)'(G), is the least number of colors k such that G has an acyclic k-edge-coloring. In this paper, it is shown that if G is a planar graph with girth at least 5 and maximum degree Delta, then chi(a)'(G) <= Delta + 1. Moreover, Delta >= 9, then chi(a)'(G) = Delta. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2958 / 2967
页数:10
相关论文
共 50 条
  • [1] Acyclic edge coloring of planar graphs with large girth
    Yu, Dongxiao
    Hou, Jianfeng
    Liu, Guizhen
    Liu, Bin
    Xu, Lan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 5196 - 5200
  • [2] Strong edge-coloring of planar graphs with girth at least seven
    Yuan, Jiaxin
    Huang, Mingfang
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 295 - 304
  • [3] Acyclic edge coloring of planar graphs
    Bu, Yuehua
    Jia, Qi
    Zhu, Hongguo
    Zhu, Junlei
    AIMS MATHEMATICS, 2022, 7 (06): : 10828 - 10841
  • [4] On r-hued Coloring of Planar Graphs with girth at least 5
    Li, Wei-Qi
    Li, Jin-Bo
    Miao, Lian-Ying
    Song, Wen-Yao
    UTILITAS MATHEMATICA, 2018, 109 : 303 - 312
  • [5] Acyclic 4-choosability of planar graphs with girth at least 5
    Montassier, Mickael
    Graph Theory in Paris: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE, 2007, : 299 - 310
  • [6] An oriented coloring of planar graphs with girth at least five
    Pinlou, Alexandre
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2108 - 2118
  • [7] Acyclic edge coloring of planar graphs with Δ colors
    Hudak, David
    Kardos, Frantisek
    Luzar, Borut
    Sotak, Roman
    Skrekovski, Riste
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (09) : 1356 - 1368
  • [8] ACYCLIC EDGE-COLORING OF PLANAR GRAPHS
    Basavaraju, Manu
    Chandran, L. Sunil
    Cohen, Nathann
    Havet, Frederic
    Mueller, Tobias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 463 - 478
  • [9] ACYCLIC LIST EDGE COLORING OF PLANAR GRAPHS
    Lai, Hsin-Hao
    Lih, Ko-Wei
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2010, 5 (04): : 413 - 436
  • [10] Adjacent vertex distinguishing edge-coloring of planar graphs with girth at least five
    Xu, Xinping
    Zhang, Yiying
    ARS COMBINATORIA, 2014, 116 : 359 - 369