Acyclic edge coloring of planar graphs with girth at least 5

被引:7
|
作者
Hou, Jianfeng [1 ]
Wang, Weitao [1 ]
Zhang, Xiaoran [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar graph; Girth; Acyclic edge coloring; Critical; SPARSE HESSIAN MATRICES; CHROMATIC INDEXES;
D O I
10.1016/j.dam.2013.06.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper edge coloring of a graph G is acyclic if there is no bichromatic cycle in G. The acyclic chromatic index of G, denoted chi(a)'(G), is the least number of colors k such that G has an acyclic k-edge-coloring. In this paper, it is shown that if G is a planar graph with girth at least 5 and maximum degree Delta, then chi(a)'(G) <= Delta + 1. Moreover, Delta >= 9, then chi(a)'(G) = Delta. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2958 / 2967
页数:10
相关论文
共 50 条
  • [21] Acyclic Edge Coloring of IC-planar Graphs
    Wen-yao SONG
    Yuan-yuan DUAN
    Juan WANG
    Lian-ying MIAO
    Acta Mathematicae Applicatae Sinica, 2020, 36 (03) : 581 - 589
  • [22] Acyclic Edge Coloring of IC-planar Graphs
    Wen-yao Song
    Yuan-yuan Duan
    Juan Wang
    Lian-ying Miao
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 581 - 589
  • [23] Local conditions for planar graphs of acyclic edge coloring
    Wenwen Zhang
    Journal of Applied Mathematics and Computing, 2022, 68 : 721 - 738
  • [24] Local conditions for planar graphs of acyclic edge coloring
    Zhang, Wenwen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 721 - 738
  • [25] Acyclic Edge Coloring of IC-planar Graphs
    Song, Wen-yao
    Duan, Yuan-yuan
    Wang, Juan
    Miao, Lian-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (03): : 581 - 589
  • [26] Strong edge-coloring for planar graphs with large girth
    Chen, Lily
    Deng, Kecai
    Yu, Gexin
    Zhou, Xiangqian
    DISCRETE MATHEMATICS, 2019, 342 (02) : 339 - 343
  • [27] Injective-edge-coloring of planar graphs with girth restriction
    Bu, Yuehua
    Wang, Peng
    Zhu, Hongguo
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (05)
  • [28] On r-hued coloring of planar graphs with girth at least 6
    Song, Huimin
    Lai, Hong-Jian
    Wu, Jian-Liang
    DISCRETE APPLIED MATHEMATICS, 2016, 198 : 251 - 263
  • [29] An Oriented 6-Coloring of Planar Graphs with Girth at Least 9
    T. H. Marshall
    Graphs and Combinatorics, 2016, 32 : 1101 - 1116
  • [30] An Oriented 6-Coloring of Planar Graphs with Girth at Least 9
    Marshall, T. H.
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1101 - 1116