Acyclic edge coloring of planar graphs with Δ colors

被引:6
|
作者
Hudak, David [2 ]
Kardos, Frantisek [2 ]
Luzar, Borut [1 ]
Sotak, Roman [2 ]
Skrekovski, Riste [3 ]
机构
[1] Inst Math Phys & Mech, Ljubljana, Slovenia
[2] Pavol Jozef Safarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
[3] Univ Ljubljana, Fac Math & Phys, Dept Math, Ljubljana 61000, Slovenia
关键词
Acyclic edge coloring; Planar graph; Discharging method;
D O I
10.1016/j.dam.2012.01.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that Delta(G) + 2 colors suffice for an acyclic edge coloring of every graph G (Fiamcik, 1978 [8]). The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is Delta + 12 (Basavaraju and Chandran, 2009[3]). In this paper, we study simple planar graphs which need only Delta(G) colors for an acyclic edge coloring. We show that a planar graph with girth g and maximum degree Delta admits such acyclic edge coloring if g >= 12, or g >= 8 and Delta >= 4, or g >= 7 and Delta >= 5, or g >= 6 and Delta >= 6, org >= 5 and Delta >= 10. Our results improve some previously known bounds. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1356 / 1368
页数:13
相关论文
共 50 条
  • [1] Acyclic edge coloring of planar graphs
    Bu, Yuehua
    Jia, Qi
    Zhu, Hongguo
    Zhu, Junlei
    AIMS MATHEMATICS, 2022, 7 (06): : 10828 - 10841
  • [2] ACYCLIC EDGE-COLORING OF PLANAR GRAPHS: Δ COLORS SUFFICE WHEN Δ IS LARGE
    Cranston, Daniel W.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (02) : 614 - 628
  • [3] ACYCLIC EDGE-COLORING OF PLANAR GRAPHS
    Basavaraju, Manu
    Chandran, L. Sunil
    Cohen, Nathann
    Havet, Frederic
    Mueller, Tobias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 463 - 478
  • [4] ACYCLIC LIST EDGE COLORING OF PLANAR GRAPHS
    Lai, Hsin-Hao
    Lih, Ko-Wei
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2010, 5 (04): : 413 - 436
  • [5] Acyclic Edge Coloring of IC-planar Graphs
    Wen-yao SONG
    Yuan-yuan DUAN
    Juan WANG
    Lian-ying MIAO
    Acta Mathematicae Applicatae Sinica, 2020, 36 (03) : 581 - 589
  • [6] Acyclic Edge Coloring of IC-planar Graphs
    Wen-yao Song
    Yuan-yuan Duan
    Juan Wang
    Lian-ying Miao
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 581 - 589
  • [7] Acyclic edge coloring of planar graphs with large girth
    Yu, Dongxiao
    Hou, Jianfeng
    Liu, Guizhen
    Liu, Bin
    Xu, Lan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 5196 - 5200
  • [8] Local conditions for planar graphs of acyclic edge coloring
    Wenwen Zhang
    Journal of Applied Mathematics and Computing, 2022, 68 : 721 - 738
  • [9] Local conditions for planar graphs of acyclic edge coloring
    Zhang, Wenwen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 721 - 738
  • [10] Acyclic Edge Coloring of IC-planar Graphs
    Song, Wen-yao
    Duan, Yuan-yuan
    Wang, Juan
    Miao, Lian-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (03): : 581 - 589