From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets

被引:5
|
作者
Jurco, Branislav [1 ]
机构
[1] Charles Univ Prague, Math Inst, Prague 18675, Czech Republic
关键词
Simplicial Lie algebra; Hypercrossed complex; Dg Lie algebra; 1-jet; GEOMETRY;
D O I
10.1016/j.geomphys.2012.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each G(n) is simply connected. We use the 1-jet of the classifying space (W) over barG to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2389 / 2400
页数:12
相关论文
共 50 条
  • [41] ON THE STRUCTURE OF SOLUBLE GRADED LIE ALGEBRAS
    Shumyatsky, Pavel
    Sica, Carmela
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (04) : 597 - 604
  • [42] Graded Lie algebras of type FP
    Weigel, Th.
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 205 (01) : 185 - 209
  • [43] Lie ideals of graded associative algebras
    Bierwirth, Hannes
    Siles Molina, Mercedes
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 191 (01) : 111 - 136
  • [44] Graded Lie-Rinehart algebras
    Barreiro, Elisabete
    Calderon, A. J.
    Navarro, Rosa M.
    Sanchez, Jose M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 191
  • [45] UNIVERSAL GRADED LIE-ALGEBRAS
    FEI, QY
    SHEN, GY
    JOURNAL OF ALGEBRA, 1992, 152 (02) : 439 - 453
  • [46] Graded quasi-Lie algebras
    Larsson, D
    Silvestrov, SD
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (11) : 1473 - 1478
  • [47] REPRESENTATIONS OF GRADED MULTILOOP LIE ALGEBRAS
    Pal, Tanusree
    Batra, Punita
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (01) : 49 - 67
  • [48] Graded multiple analogs of Lie algebras
    Vinogradov, AM
    Vinogradov, MM
    ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (1-2) : 183 - 197
  • [49] Lie ideals of graded associative algebras
    Hannes Bierwirth
    Mercedes Siles Molina
    Israel Journal of Mathematics, 2012, 191 : 111 - 136
  • [50] ON THE CENTER OF GRADED LIE-ALGEBRAS
    LOFWALL, C
    ASTERISQUE, 1984, (113-) : 263 - 267