Graded multiple analogs of Lie algebras

被引:8
|
作者
Vinogradov, AM
Vinogradov, MM
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84081 Baronissi, SA, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Salerno, Italy
[3] Diffiety Inst, Moscow 117418, Russia
[4] Inst Econ Forecasting, Moscow 117418, Russia
关键词
(multi) Lie algebra; (multi) Poisson manifold; (multi) Jacobi identity; (graded) Richardson-Nijenhuis bracket; Nambu mechanics;
D O I
10.1023/A:1015281004171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Graded analogs of (n,k,r)-Lie algebras (in particular, of Nambu-Lie algebras), introduced by the authors, are defined and their general property are studied.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 50 条
  • [1] Graded Multiple Analogs of Lie Algebras
    A. M. Vinogradov
    M. M. Vinogradov
    Acta Applicandae Mathematica, 2002, 72 : 183 - 197
  • [2] Algebras of quotients of graded Lie algebras
    Sanchez Ortega, Juana
    Siles Molina, Mercedes
    JOURNAL OF ALGEBRA, 2010, 323 (07) : 2002 - 2015
  • [3] New applications of graded Lie algebras to Lie algebras, generalized Lie algebras, and cohomology
    Pinczon, Georges
    Ushirobira, Rosane
    JOURNAL OF LIE THEORY, 2007, 17 (03) : 633 - 667
  • [4] DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS
    Jubin, Benoit
    Kotov, Alexei
    Poncin, Norbert
    Salnikov, Vladimir
    TRANSFORMATION GROUPS, 2022, 27 (02) : 497 - 523
  • [5] DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS
    BENOIT JUBIN
    ALEXEI KOTOV
    NORBERT PONCIN
    VLADIMIR SALNIKOV
    Transformation Groups, 2022, 27 : 497 - 523
  • [6] GRADED LIE ALGEBRAS OF AN ALGEBRA
    NIJENHUIS, A
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (05): : 475 - +
  • [7] A radical for graded Lie algebras
    Daniel Ceretto
    Esther García
    Miguel Gómez Lozano
    Acta Mathematica Hungarica, 2012, 136 : 16 - 29
  • [8] On the homology of graded Lie algebras
    Tirao, P
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (2-3) : 357 - 366
  • [9] Graded identities for Lie algebras
    Koshlukov, Plamen
    Krasilnikov, Alexei
    Silva, Diogo D. P.
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 181 - 188
  • [10] Graded Lie algebras and applications
    Iachello, F
    LATIN-AMERICAN SCHOOL OF PHYSICS - XXXV ELAF: SUPERSYMMETRIES IN PHYSICS AND ITS APPLICATIONS, 2005, 744 : 85 - 104