Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each G(n) is simply connected. We use the 1-jet of the classifying space (W) over barG to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras. (C) 2012 Elsevier B.V. All rights reserved.
机构:
Inst Math de Jussieu Paris Rive Gauche, 4 Pl Jussieu,BC 247, F-75252 Paris 5, FranceInst Math de Jussieu Paris Rive Gauche, 4 Pl Jussieu,BC 247, F-75252 Paris 5, France
Jubin, Benoit
Kotov, Alexei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hradec Kralove, Fac Sci, Rokitanskeho 62, Hradec Kralove 50003, Czech RepublicInst Math de Jussieu Paris Rive Gauche, 4 Pl Jussieu,BC 247, F-75252 Paris 5, France
Kotov, Alexei
论文数: 引用数:
h-index:
机构:
Poncin, Norbert
Salnikov, Vladimir
论文数: 0引用数: 0
h-index: 0
机构:
LaSIE CNRS, Av Michel Crepeau, F-17042 La Rochelle 1, France
La Rochelle Univ, Av Michel Crepeau, F-17042 La Rochelle 1, FranceInst Math de Jussieu Paris Rive Gauche, 4 Pl Jussieu,BC 247, F-75252 Paris 5, France