Cardiac disorder classification by heart sound signals using murmur likelihood and hidden Markov model state likelihood

被引:39
|
作者
Kwak, C. [1 ]
Kwon, O. -W. [1 ]
机构
[1] Chungbuk Natl Univ, Dept Control & Robot Engn, Cheongju, South Korea
基金
新加坡国家研究基金会;
关键词
SVM CLASSIFICATION; ALGORITHM;
D O I
10.1049/iet-spr.2011.0170
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study proposes a new algorithm for cardiac disorder classification by heart sound signals. The algorithm consists of three steps: segmentation, likelihood computation and classification. In the segmentation step, the authors convert heart sound signals into mel-frequency cepstral coefficient features and then partition input signals into S1/S2 intervals by using a hidden Markov model (HMM). In the likelihood computation step, using only a period of heart sound signals, the authors compute the HMM 'state' likelihood and murmur likelihood. The 'state' likelihood is computed for each state of HMM-based cardiac disorder models, and the murmur likelihood is obtained by probabilistically modelling the energies of band-pass filtered signals for the heart pulse and murmur classes. In the classification step, the authors decided the final cardiac disorder by combining the state likelihood and the murmur likelihood by using a support vector machine. In computer experiments, the authors show that the proposed algorithm greatly improve classification accuracy by effectively reducing the classification errors for the cardiac disorder categories where the temporal murmur position plays an important role in detecting disorders.
引用
收藏
页码:326 / 334
页数:9
相关论文
共 50 条
  • [31] MAXIMUM-LIKELIHOOD HIDDEN MARKOV MODELING USING A DOMINANT SEQUENCE OF STATES
    MERHAV, N
    EPHRAIM, Y
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (09) : 2111 - 2115
  • [32] Heart Sound-Based Cardiac Disorder Classifiers Using an SVM to Combine HMM and Murmur Scores
    Kwak, Chul
    Kwon, Oh-Wook
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2011, 30 (03): : 149 - 157
  • [33] Classification of heart sound signals with Whisper model
    Alotaibi, Maryam
    Bazi, Yakoub
    Al Rahhal, Mohamad Mahmoud
    Ammour, Nassim
    Zuair, Mansour
    Connection Science, 2025, 37 (01)
  • [34] Classification of heart sound signals using a novel deep WaveNet model
    Oh, Shu Lih
    Jahmunah, V
    Ooi, Chui Ping
    Tan, Ru-San
    Ciaccio, Edward J.
    Yamakawa, Toshitaka
    Tanabe, Masayuki
    Kobayashi, Makiko
    Acharya, U. Rajendra
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 196
  • [35] Statistical inference for the nonparametric and semiparametric hidden Markov model via the composite likelihood approach
    Mian Huang
    Yue Huang
    Weixin Yao
    Science China Mathematics, 2023, 66 (03) : 601 - 626
  • [36] Statistical inference for the nonparametric and semiparametric hidden Markov model via the composite likelihood approach
    Mian Huang
    Yue Huang
    Weixin Yao
    Science China Mathematics, 2023, 66 : 601 - 626
  • [37] Hidden Markov model based video indexing with discrete cosine transform as a likelihood function
    Kolekar, MH
    Sengupta, S
    PROCEEDINGS OF THE IEEE INDICON 2004, 2004, : 157 - 159
  • [38] Statistical inference for the nonparametric and semiparametric hidden Markov model via the composite likelihood approach
    Huang, Mian
    Huang, Yue
    Yao, Weixin
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (03) : 601 - 626
  • [39] The influence of initial conditions on maximum likelihood estimation of the parameters of a binary hidden Markov model
    Dunmur, AP
    Titterington, DM
    STATISTICS & PROBABILITY LETTERS, 1998, 40 (01) : 67 - 73
  • [40] A new maximum likelihood gradient algorithm for on-line hidden Markov model identification
    Collings, IB
    Ryden, T
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2261 - 2264