The influence of initial conditions on maximum likelihood estimation of the parameters of a binary hidden Markov model

被引:4
|
作者
Dunmur, AP [1 ]
Titterington, DM [1 ]
机构
[1] Univ Glasgow, Dept Stat, Glasgow G12 8QW, Lanark, Scotland
关键词
Baum-Welch algorithm; binary Markov chain; EM algorithm; initial conditions;
D O I
10.1016/S0167-7152(98)00100-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Baum-Welch (EM) algorithm is a familiar tool for calculation of the maximum likelihood estimate of the parameters in hidden Markov chain models. For the particular case of a binary Markov chain corrupted by binary channel noise a detailed study is carried out of the influence that the initial conditions impose on the results produced by the algorithm. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [1] Arithmetic Solution for Maximum Likelihood Estimation of Hidden Markov Model
    Hu, Jibing
    Zhao, Zhouhua
    Liu, Linyuan
    [J]. 2016 3RD INTERNATIONAL CONFERENCE ON ECONOMIC, BUSINESS MANAGEMENT AND EDUCATIONAL INNOVATION (EBMEI 2016), PT 2, 2016, 55 : 631 - 638
  • [2] Maximum likelihood estimation of hidden Markov processes
    Frydman, H
    Lakner, P
    [J]. ANNALS OF APPLIED PROBABILITY, 2003, 13 (04): : 1296 - 1312
  • [3] Maximum Likelihood Estimation for a Hidden Semi-Markov Model with Multivariate Observations
    Jiang, Rui
    Kim, Michael Jong
    Makis, Viliam
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2012, 28 (07) : 783 - 791
  • [4] Joint maximum a posteriori estimation of transformation and hidden Markov model parameters
    Siohan, O
    Chesta, C
    Lee, CH
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 965 - 968
  • [5] MAXIMUM-LIKELIHOOD-ESTIMATION FOR HIDDEN MARKOV-MODELS
    LEROUX, BG
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 40 (01) : 127 - 143
  • [6] MAXIMUM LIKELIHOOD ESTIMATION IN HIDDEN MARKOV MODELS WITH INHOMOGENEOUS NOISE
    Diehn, Manuel
    Munk, Axel
    Rudolf, Daniel
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2019, 23 (492-523) : 492 - 523
  • [7] Penalized maximum likelihood estimation for Gaussian hidden Markov models
    Alexandrovich, Grigory
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (20) : 6133 - 6148
  • [8] Maximum likelihood estimation for hidden semi-Markov models
    Barbu, V
    Limnios, N
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 201 - 205
  • [9] Nonparametric identification and maximum likelihood estimation for hidden Markov models
    Alexandrovich, G.
    Holzmann, H.
    Leister, A.
    [J]. BIOMETRIKA, 2016, 103 (02) : 423 - 434
  • [10] Maximum likelihood estimation of an extended latent Markov model for clustered binary panel data
    Bartolucci, Francesco
    Nigro, Valentina
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3470 - 3483