Ammann Tilings in Symplectic Geometry

被引:3
|
作者
Battaglia, Fiammetta [1 ]
Prato, Elisa [2 ]
机构
[1] Dipartimento Matemat & Informat U Dini, I-50139 Florence, Italy
[2] Dipartimento Matemat & Informat U Dini, I-50122 Florence, Italy
关键词
symplectic quasifold; nonperiodic tiling; quasilattice;
D O I
10.3842/SIGMA.2013.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study Ammann tilings from the perspective of symplectic geometry. Ammann tilings are nonperiodic tilings that are related to quasicrystals with icosahedral symmetry. We associate to each Ammann tiling two explicitly constructed highly singular symplectic spaces and we show that they are diffeomorphic but not symplectomorphic. These spaces inherit from the tiling its very interesting symmetries.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Geometry of lifts of tilings of Euclidean spaces
    Gavrilyuk, A. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 (01) : 39 - 55
  • [32] Geometry of lifts of tilings of Euclidean spaces
    A. A. Gavrilyuk
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 39 - 55
  • [33] NONCOMMUTATIVE GEOMETRY OF TILINGS AND GAP LABELING
    KELLENDONK, J
    REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (07) : 1133 - 1180
  • [34] Spherical Geometry and Spherical Tilings with GeoGebra
    D'Azevedo Breda, Ana Maria
    Santos Dos Santos, Jose Manuel Dos
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2018, 22 (02): : 283 - 299
  • [35] FOLIATIONS, RIEMANNIAN GEOMETRY AND SYMPLECTIC-GEOMETRY
    LICHNEROWICZ, A
    TRANVANTAN
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (04): : 205 - 210
  • [36] Symplectic Geometry of the Koopman Operator
    Kozlov, V. V.
    DOKLADY MATHEMATICS, 2021, 104 (01) : 175 - 179
  • [37] Spectral geometry of symplectic spinors
    Vassilevich, Dmitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [38] FOLIATIONS IN SYMPLECTIC-GEOMETRY
    DAZORD, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (14): : 489 - 491
  • [39] Symplectic geometry of semisimple orbits
    Azad, Hassan
    van den Ban, Erik
    Biswas, Indranil
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 507 - 533
  • [40] Special geometry and symplectic transformations
    deWit, B
    VanProeyen, A
    NUCLEAR PHYSICS B, 1996, : 196 - 206