Ammann Tilings in Symplectic Geometry

被引:3
|
作者
Battaglia, Fiammetta [1 ]
Prato, Elisa [2 ]
机构
[1] Dipartimento Matemat & Informat U Dini, I-50139 Florence, Italy
[2] Dipartimento Matemat & Informat U Dini, I-50122 Florence, Italy
关键词
symplectic quasifold; nonperiodic tiling; quasilattice;
D O I
10.3842/SIGMA.2013.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study Ammann tilings from the perspective of symplectic geometry. Ammann tilings are nonperiodic tilings that are related to quasicrystals with icosahedral symmetry. We associate to each Ammann tiling two explicitly constructed highly singular symplectic spaces and we show that they are diffeomorphic but not symplectomorphic. These spaces inherit from the tiling its very interesting symmetries.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] SYMPLECTIC-GEOMETRY
    AUDIN, M
    IGLESIAS, P
    RECHERCHE, 1994, 25 (271): : 1246 - 1252
  • [22] SYMPLECTIC-GEOMETRY
    WEINSTEIN, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 5 (01) : 1 - 13
  • [23] Symplectic geometry and topology
    Arnold, VI
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) : 3307 - 3343
  • [24] Supertransvectants and Symplectic Geometry
    Gargoubi, H.
    Ovsienko, V.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [25] Symplectic Birational Geometry
    Li, Tian-Jun
    Ruan, Yongbin
    NEW PERSPECTIVES AND CHALLENGES IN SYMPLECTIC FIELD THEORY, 2009, 49 : 307 - +
  • [26] On the hyperbolic symplectic geometry
    Gramlich, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 105 (01) : 97 - 110
  • [27] Stability in Symplectic Geometry
    Georgoulas, Valentina
    Robbin, Joel W.
    Salamon, Dietmar A.
    MOMENT-WEIGHT INEQUALITY AND THE HILBERT-MUMFORD CRITERION: GIT FROM THE DIFFERENTIAL GEOMETRIC VIEWPOINT, 2021, 2297 : 51 - 58
  • [28] SYMPLECTIC-GEOMETRY
    WEINSTEIN, A
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 39 : 61 - 73
  • [29] The geometry of symplectic pairs
    Bande, G
    Kotschick, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) : 1643 - 1655
  • [30] Teaching Geometry and Research on Fractal Tilings
    Lai, Peng-Jen
    ICEIC 2011/ IRE&PS 2011: INTERNATIONAL CONFERENCE ON EDUCATION, INFORMATICS, AND CYBERNETICS/ INTERNATIONAL SYMPOSIUM ON INTEGRATING RESEARCH, EDUCATION, AND PROBLEM SOLVING, 2011, : 217 - 222