Ammann Tilings in Symplectic Geometry

被引:3
|
作者
Battaglia, Fiammetta [1 ]
Prato, Elisa [2 ]
机构
[1] Dipartimento Matemat & Informat U Dini, I-50139 Florence, Italy
[2] Dipartimento Matemat & Informat U Dini, I-50122 Florence, Italy
关键词
symplectic quasifold; nonperiodic tiling; quasilattice;
D O I
10.3842/SIGMA.2013.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study Ammann tilings from the perspective of symplectic geometry. Ammann tilings are nonperiodic tilings that are related to quasicrystals with icosahedral symmetry. We associate to each Ammann tiling two explicitly constructed highly singular symplectic spaces and we show that they are diffeomorphic but not symplectomorphic. These spaces inherit from the tiling its very interesting symmetries.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The symplectic geometry of Penrose rhombus tilings
    Battaglia, Fiammetta
    Prato, Elisa
    JOURNAL OF SYMPLECTIC GEOMETRY, 2008, 6 (02) : 139 - 158
  • [2] Ammann Bars for Octagonal Tilings
    Porrier, Carole
    Fernique, Thomas
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (03):
  • [3] On the Structure of Ammann A2 Tilings
    Durand, Bruno
    Shen, Alexander
    Vereshchagin, Nikolay
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 63 (03) : 577 - 606
  • [4] On the Structure of Ammann A2 Tilings
    Bruno Durand
    Alexander Shen
    Nikolay Vereshchagin
    Discrete & Computational Geometry, 2020, 63 : 577 - 606
  • [5] RECONSTRUCTING THE STRUCTURE FACTORS OF THE AMMANN TILINGS
    JARIC, MV
    QIU, SY
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 153 : 181 - 186
  • [6] Hamiltonian Cycles on Ammann-Beenker Tilings
    Singh, Shobhna
    Lloyd, Jerome
    Flicker, Felix
    PHYSICAL REVIEW X, 2024, 14 (03):
  • [7] Canonical substitutions tilings of Ammann-Beenker type
    Harriss, EO
    Lamb, JSW
    THEORETICAL COMPUTER SCIENCE, 2004, 319 (1-3) : 241 - 279
  • [8] Statistical mechanics of dimers on quasiperiodic Ammann-Beenker tilings
    Lloyd, Jerome
    Biswas, Sounak
    Simon, Steven H.
    Parameswaran, S. A.
    Flicker, Felix
    PHYSICAL REVIEW B, 2022, 106 (09)
  • [9] Coxeter pairs, Ammann patterns, and Penrose-like tilings
    Boyle, Latham
    Steinhardt, Paul J.
    PHYSICAL REVIEW B, 2022, 106 (14)
  • [10] THE GEOMETRY OF ICOSAHEDRAL TILINGS
    MACKAY, AL
    SCRIPTA METALLURGICA, 1986, 20 (09): : 1205 - 1210