Sprouting Angiogenesis: A Numerical Approach with Experimental Validation

被引:9
|
作者
Guerra, Ana [1 ]
Belinha, Jorge [2 ]
Mangir, Naside [3 ,4 ]
MacNeil, Sheila [3 ]
Natal Jorge, Renato [5 ,6 ]
机构
[1] Inst Sci & Innovat Mech & Ind Engn INEGI, Rua Dr Roberto Frias 400, P-4200465 Porto, Portugal
[2] Polytech Porto ISEP, Sch Engn, Mech Engn Dept, Rua Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
[3] Univ Sheffield, Kroto Res Inst, Dept Mat Sci & Engn, North Campus,Broad Lane, Sheffield S3 7HQ, S Yorkshire, England
[4] Royal Hallamshire Hosp, Dept Urol, Glossop Rd, Sheffield S10 2JF, S Yorkshire, England
[5] INEGI, Associated Lab Energy Transports & Aeronaut LAETA, Rua Dr Roberto Frias 400, P-4200465 Porto, Portugal
[6] Univ Porto FEUP, Fac Engn, Mech Engn Dept, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
关键词
Vascular endothelial growth factor; Capillary network; Chick chorioallantoic membrane assay; Radial point interpolation method; CHICK CHORIOALLANTOIC MEMBRANE; ENDOTHELIAL GROWTH-FACTOR; IN-VIVO; MODEL; SIMULATION; VEGF;
D O I
10.1007/s10439-020-02622-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A functional vascular network is essential to the correct wound healing. In sprouting angiogenesis, vascular endothelial growth factor (VEGF) regulates the formation of new capillaries from pre-existing vessels. This is a very complex process and mathematical formulation permits to study angiogenesis using less time-consuming, reproducible and cheaper methodologies. This study aimed to mimic the chemoattractant effect of VEGF in stimulating sprouting angiogenesis. We developed a numerical model in which endothelial cells migrate according to a diffusion-reaction equation for VEGF. A chick chorioallantoic membrane (CAM) bioassay was used to obtain some important parameters to implement in the model and also to validate the numerical results. We verified that endothelial cells migrate following the highest VEGF concentration. We compared the parameters-total branching number, total vessel length and branching angle-that were obtained in thein silicoand thein vivomethodologies and similar results were achieved (p-valuesmaller than 0.5;n= 6). For the difference between the total capillary volume fractions assessed using both methodologies values smaller than 15% were obtained. In this study we simulated, for the first time, the capillary network obtained during the CAM assay with a realistic morphology and structure.
引用
收藏
页码:871 / 884
页数:14
相关论文
共 50 条
  • [41] MODAL CHARACTERISTICS OF A FLEXIBLE TUBE IN TURBULENT AXIAL FLOW: A NUMERICAL APPROACH AND VALIDATION WITH EXPERIMENTAL DATA
    De Ridder, J.
    Degroote, J.
    Van Tichelen, K.
    Schuurmans, P.
    Vierendeels, J.
    COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V, 2013, : 668 - 676
  • [42] Revisiting Formability and Failure of AISI304 Sheets in SPIF: Experimental Approach and Numerical Validation
    Centeno, Gabriel
    Martinez-Donaire, Andres Jesus
    Bagudanch, Isabel
    Morales-Palma, Domingo
    Garcia-Romeu, Maria Luisa
    Vallellano, Carpoforo
    METALS, 2017, 7 (12):
  • [43] Applying the phase-field approach for brittle fracture prediction: Numerical implementation and experimental validation
    Kriaa, Yosra
    Hentati, Hamdi
    Zouari, Bassem
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (06) : 828 - 839
  • [44] The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis
    Santos-Oliveira, Patricia
    Correia, Antonio
    Rodrigues, Tiago
    Ribeiro-Rodrigues, Teresa M.
    Matafome, Paulo
    Carlos Rodriguez-Manzaneque, Juan
    Seica, Raquel
    Girao, Henrique
    Travasso, Rui D. M.
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (08)
  • [45] Angiopoietin-1 induces sprouting angiogenesis in vitro
    Koblizek, TI
    Weiss, C
    Yancopoulos, GD
    Deutsch, U
    Risau, W
    CURRENT BIOLOGY, 1998, 8 (09) : 529 - 532
  • [46] Cx40 Suppresses Sprouting Angiogenesis In Vitro
    Looker, Edward K.
    Aan, Femke J.
    Hatch, Christopher J.
    Hughes, Christopher C. W.
    Matter, Michelle L.
    Fang, Jennifer S.
    BIOELECTRICITY, 2023, 5 (04): : 307 - 317
  • [47] PERICYTE INVOLVEMENT IN CAPILLARY SPROUTING DURING ANGIOGENESIS INSITU
    NEHLS, V
    DENZER, K
    DRENCKHAHN, D
    CELL AND TISSUE RESEARCH, 1992, 270 (03) : 469 - 474
  • [48] Evaluating Choroidal Microvascular Angiogenesis by Choroid Sprouting Assay
    Shao, Zhuo
    Friedlander, Mollie
    Hurst, Christian
    Cui, Zhenghao
    Evans, Lucy
    Chen, Jing
    Sapieha, Przemyslaw
    Chemtob, Sylvain
    Joyal, Jean-Sebastien
    Smith, Lois
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [49] Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis
    Barrasa-Fano, J.
    Shapeti, A.
    de Jong, J.
    Ranga, A.
    Sanz-Herrera, J. A.
    Van Oosterwyck, H.
    ACTA BIOMATERIALIA, 2021, 126 : 326 - 338
  • [50] Notch signaling controls sprouting angiogenesis of endometriotic lesions
    Koerbel, Christina
    Gerstner, Miriam D.
    Menger, Michael D.
    Laschke, Matthias W.
    ANGIOGENESIS, 2018, 21 (01) : 37 - 46