Sprouting Angiogenesis: A Numerical Approach with Experimental Validation

被引:9
|
作者
Guerra, Ana [1 ]
Belinha, Jorge [2 ]
Mangir, Naside [3 ,4 ]
MacNeil, Sheila [3 ]
Natal Jorge, Renato [5 ,6 ]
机构
[1] Inst Sci & Innovat Mech & Ind Engn INEGI, Rua Dr Roberto Frias 400, P-4200465 Porto, Portugal
[2] Polytech Porto ISEP, Sch Engn, Mech Engn Dept, Rua Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
[3] Univ Sheffield, Kroto Res Inst, Dept Mat Sci & Engn, North Campus,Broad Lane, Sheffield S3 7HQ, S Yorkshire, England
[4] Royal Hallamshire Hosp, Dept Urol, Glossop Rd, Sheffield S10 2JF, S Yorkshire, England
[5] INEGI, Associated Lab Energy Transports & Aeronaut LAETA, Rua Dr Roberto Frias 400, P-4200465 Porto, Portugal
[6] Univ Porto FEUP, Fac Engn, Mech Engn Dept, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
关键词
Vascular endothelial growth factor; Capillary network; Chick chorioallantoic membrane assay; Radial point interpolation method; CHICK CHORIOALLANTOIC MEMBRANE; ENDOTHELIAL GROWTH-FACTOR; IN-VIVO; MODEL; SIMULATION; VEGF;
D O I
10.1007/s10439-020-02622-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A functional vascular network is essential to the correct wound healing. In sprouting angiogenesis, vascular endothelial growth factor (VEGF) regulates the formation of new capillaries from pre-existing vessels. This is a very complex process and mathematical formulation permits to study angiogenesis using less time-consuming, reproducible and cheaper methodologies. This study aimed to mimic the chemoattractant effect of VEGF in stimulating sprouting angiogenesis. We developed a numerical model in which endothelial cells migrate according to a diffusion-reaction equation for VEGF. A chick chorioallantoic membrane (CAM) bioassay was used to obtain some important parameters to implement in the model and also to validate the numerical results. We verified that endothelial cells migrate following the highest VEGF concentration. We compared the parameters-total branching number, total vessel length and branching angle-that were obtained in thein silicoand thein vivomethodologies and similar results were achieved (p-valuesmaller than 0.5;n= 6). For the difference between the total capillary volume fractions assessed using both methodologies values smaller than 15% were obtained. In this study we simulated, for the first time, the capillary network obtained during the CAM assay with a realistic morphology and structure.
引用
收藏
页码:871 / 884
页数:14
相关论文
共 50 条
  • [21] Design proposal for a microfluidic device for sprouting angiogenesis
    Calt, M. A.
    Sempkowski, M. K.
    Lamba, R.
    Ahlawat, S.
    Anderson, C.
    2012 38TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE (NEBEC), 2012, : 333 - 334
  • [22] Intussusceptive angiogenesis-the alternative to capillary sprouting
    Burri, Peter H.
    Djonov, Valentin
    MOLECULAR ASPECTS OF MEDICINE, 2002, 23 (06) : S1 - S27
  • [23] Dynamics of endothelial cell behavior in sprouting angiogenesis
    Eilken, Hanna M.
    Adams, Ralf H.
    CURRENT OPINION IN CELL BIOLOGY, 2010, 22 (05) : 617 - 625
  • [24] Induction of directional sprouting angiogenesis by matrix gradients
    Borselli, Cristina
    Oliviero, Olimpia
    Battista, Sabrina
    Ambrosio, Luigi
    Netti, Paolo A.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 80A (02) : 297 - 305
  • [25] Controlling sprouting angiogenesis - a tale of leaders and followers
    Gerhardt, Holger
    WOUND REPAIR AND REGENERATION, 2008, 16 (06) : A76 - A76
  • [26] Transcriptional pausing as a molecular mechanism of sprouting angiogenesis
    Cebola, Ines
    Birdsey, Graeme M.
    Randi, Anna M.
    NATURE CARDIOVASCULAR RESEARCH, 2024, 3 (10): : 1184 - 1186
  • [27] Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering
    Kargozar, Saeid
    Baino, Francesco
    Hamzehlou, Sepideh
    Hill, Robert G.
    Mozafari, Masoud
    TRENDS IN BIOTECHNOLOGY, 2018, 36 (04) : 430 - 444
  • [28] Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead
    van Hinsbergh, Victor W. M.
    Koolwijk, Pieter
    CARDIOVASCULAR RESEARCH, 2008, 78 (02) : 203 - 212
  • [29] cAMP Regulates Sprouting Angiogenesis in Endothelial Cells
    Garg, J.
    Feng, Y.
    Schmidt, M.
    Wieland, T.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2015, 388 : S4 - S4
  • [30] EVALUATION OF NUMERICAL POUNDING MODELS WITH EXPERIMENTAL VALIDATION
    Khatiwada, S.
    Chouw, N.
    Butterworth, J. W.
    BULLETIN OF THE NEW ZEALAND SOCIETY FOR EARTHQUAKE ENGINEERING, 2013, 46 (03): : 117 - 130