Research on protective mechanism of ibuprofen in myocardial ischemia-reperfusion injury in rats through the PI3K/Akt/mTOR signaling pathway

被引:12
|
作者
Chi, Y. [1 ]
Ma, Q. [2 ]
Ding, X-Q [3 ]
Qin, X. [4 ]
Wang, C. [5 ]
Zhang, J. [6 ]
机构
[1] Jining Med Univ, Peoples Hosp Rizhao, Community 1, Rizhao, Peoples R China
[2] Jining Med Univ, Peoples Hosp Rizhao, Dept Cardiovasc Med, Rizhao, Peoples R China
[3] Rizhao Inst Prevent & Control TB, Rizhao, Peoples R China
[4] Jining Med Univ, Peoples Hosp Rizhao, Dept Neurol, Rizhao, Peoples R China
[5] Jining Med Univ, Peoples Hosp Rizhao, CT Room, Rizhao, Peoples R China
[6] Jining Med Univ, Peoples Hosp Rizhao, Dept Cardiothorac Vasc Surg, Rizhao, Peoples R China
关键词
Ibuprofen; Myocardial ischemia-reperfusion; PI3K/Akt/mTOR signaling pathway; APOPTOSIS;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
OBJECTIVE: To study the protective mechanism of ibuprofen (Ib) in myocardial ischemia-reperfusion (I/R) injury in rats, and to analyze its regulatory effect on the phosphatidylinositol 3-hydroxy kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. MATERIALS AND METHODS: The rat model of myocardial I/R injury was established via ligation of the left main coronary artery (LCA) for 30 min and then reperfusion for 120 min. A total of 36 Sprague-Dawley (SD) rats were randomly divided into sham group (S group, n=12), model group (I/R group, n=12) and lb group (n=12). The levels of serum creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) in each group were detected. The rats were executed, the heart was isolated and the area of myocardial infarction was determined via 2,3,5-triphenyltetrazolium chloride (TTC) staining. The expression levels of vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1 (HIF-1) and apoptosis-related proteins in myocardial tissues in each group were detected via Western blotting. Moreover, the content of inflammatory factors in myocardial tissues in each group was detected using the enzyme-linked immunosorbent assay (ELISA) kit. The expression levels of related proteins in the PI3K/Akt/mTOR signaling pathway in myocardial tissues were further analyzed. RESULTS: Compared with those in S group, the levels of CK-MB and LDH were significantly increased (p<0.01), the area of myocardial infarction was significantly increased (p<0.01), the VEGF, HIF-1 and Cleaved caspase-3 protein levels in myocardial tissues were increased (p<0.01), while Bcl-2/Bax declined (p<0.01), the content of interleukin-1 (IL-1), IL-6 and tumor necrosis factor-alpha (TNF-alpha) in myocardial tissues was increased (p<0.01), while the content of IL- 10 declined (p<0.01), and the expression levels of PI3K, p-Akt and p-mTOR proteins in myocardial tissues were significantly decreased (p<0.01) in I/R group. Compared with those in I/R group, the levels of CK-MB and LDH were significantly decreased (p<0.01), the area of myocardial infarction was significantly decreased (p<0.01), the VEGF, HIF-1 and Cleaved caspase-3 protein levels in myocardial tissues were decreased (p<0.01), while Bcl-2/Bax was increased (p<0.01), the content of IL-1, IL-6 and TNF-alpha in myocardial tissues declined (p<0.01), while the content of IL-10 was significantly increased (p<0.01), and the expression levels of PI3K, p-Akt and p-mTOR proteins in myocardial tissues were significantly increased (p<0.01) in Ib group. CONCLUSIONS: Ib can activate the PI3K/Akt/mTOR signaling pathway, reduce the release of inflammatory factors and apoptosis, and alleviate the myocardial I/R injury in myocardial cells in rats.
引用
收藏
页码:4465 / 4473
页数:9
相关论文
共 50 条
  • [41] Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice
    Jin, Lei
    Mo, Yun
    Yue, Er-Li
    Liu, Yuan
    Liu, Kang-Yong
    [J]. BIOENGINEERED, 2021, 12 (01) : 7432 - 7445
  • [42] β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Qian Zhang
    Ruidi An
    Xiaocui Tian
    Mei Yang
    Minghang Li
    Jie Lou
    Lu Xu
    Zhi Dong
    [J]. Neurochemical Research, 2017, 42 : 1459 - 1469
  • [43] The effects of EGCG and CAPE through PI3K/Akt/mTOR pathway on ischemia-reperfusion damage in rat testicular tissue
    Inan, S.
    Dilber, Y.
    Ercan, G. Alper
    Sencan, A.
    [J]. FEBS JOURNAL, 2016, 283 : 417 - 417
  • [44] Schisandrin B protects against myocardial ischemia/reperfusion injury via the PI3K/Akt pathway in rats
    Zhao, Xuyong
    Xiang, Yijia
    Cai, Changhong
    Zhou, Aiming
    Zhu, Ning
    Zeng, Chunlai
    [J]. MOLECULAR MEDICINE REPORTS, 2018, 17 (01) : 556 - 561
  • [45] The PI3K/Akt/mTOR signaling pathway
    Dennis, P. A.
    [J]. ANNALS OF ONCOLOGY, 2011, 22 : 19 - 19
  • [46] Chrysin ameliorates cerebral ischemia/reperfusion (I/R) injury in rats by regulating the PI3K/Akt/mTOR pathway
    Li, Teng-Fei
    Ma, Ji
    Han, Xin-Wei
    Jia, Yong-Xu
    Yuan, Hui-Fei
    Shui, Shao-Feng
    Guo, Dong
    Yan, Lei
    [J]. NEUROCHEMISTRY INTERNATIONAL, 2019, 129
  • [47] JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: effects of salvianolic acid A intervention
    Chen, Qiuping
    Xu, Tongda
    Li, Dongye
    Pan, Defeng
    Wu, Pei
    Luo, Yuanyuan
    Ma, Yanfeng
    Liu, Yang
    [J]. AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2016, 8 (06): : 2534 - 2548
  • [48] LncRNA LSINCT5/miR-222 regulates myocardial ischemia-reperfusion injury through PI3K/AKT pathway
    Tong, Xueying
    Chen, Jiajuan
    Liu, Wei
    Liang, Hui
    Zhu, Hezhong
    [J]. JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2021, 52 (03) : 720 - 729
  • [49] Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway
    Cheng, Xiangyang
    Hu, Jing
    Wang, Ya
    Ye, Hongwei
    Li, Xiaohong
    Gao, Qin
    Li, Zhenghong
    [J]. JOURNAL OF DIABETES RESEARCH, 2018, 2018
  • [50] Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway
    Ruan, Cailian
    Guo, Hongtao
    Gao, Jiaqi
    Wang, Yiwei
    Liu, Zhiyong
    Yan, Jinyi
    Li, Xiaoji
    Lv, Haixia
    [J]. BRAIN AND BEHAVIOR, 2021, 11 (10):