Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway

被引:42
|
作者
Cheng, Xiangyang [1 ]
Hu, Jing [1 ]
Wang, Ya [2 ]
Ye, Hongwei [2 ]
Li, Xiaohong [1 ]
Gao, Qin [2 ]
Li, Zhenghong [2 ]
机构
[1] First Affiliated Hosp, Bengbu Med Coll, Dept Anesthesiol, Bengbu 233004, Anhui, Peoples R China
[2] Bengbu Med Coll, Dept Physiol, Bengbu 233030, Anhui, Peoples R China
关键词
ISCHEMIA-REPERFUSION INJURY; OXIDATIVE STRESS; INDUCED CARDIOPROTECTION; CELL APOPTOSIS; HEART; PROTECTS; INFLAMMATION; GSK-3-BETA; ABOLISHES; REDUCTION;
D O I
10.1155/2018/3071959
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. The present study was designed to determine whether dexmedetomidine (DEX) exerts cardioprotection against myocardial I/R injury in diabetic hearts and the mechanisms involved. Methods. A total of 30 diabetic rats induced by highglucose-fat diet and streptozotocin (STZ) were randomly assigned to five groups: diabetic sham-operated group (DM-S), diabetic 1/R group (DM-I/R), diabetic DEX group (DM-D), diabetic DEX+ Wort group (DM-DW), and diabetic Wort group (DM-W). Another 12 age-matched male normal SD rats were randomly divided into two groups: sham-operated group (S) and I/R group (I/R). All rats were subjected to 30 min myocardial ischemia followed by 120 min reperfusion except sham groups. Plasmas were collected to measure the malondialdehyde (MDA), creatine kinase isoenzymes (CK-MB), and lactate dehydrogenase (LDH) levels and superoxide dismutase (SOD) activity at the end of reperfusion. Pathologic changes in myocardial tissues were observed by H-E staining. The total and phosphorylated form of Akt and GSK-3 beta protein expressions were measured by western blot. The ratio of Bcl-2/Bax at mRNA level was detected by reverse transcription-polymerase chain reaction (RT-PCR). Results. DEX significantly reduced plasma CK-MB, MDA concentration, and LDH level and increased SOD activity caused by I/R. The phosphorylation of Akt and GSK-3 beta was increased, Bcl-2 mRNA and the Bcl-2/Bax ratio was increased, and Bax mRNA was decreased in the DEX group as compared to the I/R group, while posttreatment with Wort attenuated the effects induced by DEX. Conclusion. The results of this study suggest that DEX postconditioning may increase the phosphorylation of GSK-3 beta by activating the PI3K/Akt signaling pathway and may inhibit apoptosis and oxidative stress of the myocardium, thus exerting protective effects in diabetic rat hearts suffering from I/R injury.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury
    Cheng, Xiang Yang
    Gu, Xiao Yu
    Gao, Qin
    Zong, Qiao Feng
    Li, Xiao Hong
    Zhang, Ye
    [J]. MOLECULAR MEDICINE REPORTS, 2016, 14 (01) : 797 - 803
  • [2] Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway
    Wang, Y.
    Zhang, Z. Z.
    Wu, Y.
    Ke, J. J.
    He, X. H.
    Wang, Y. L.
    [J]. BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2013, 46 (10) : 861 - 867
  • [3] The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury
    Deng, Rui-ming
    Zhou, Juan
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 123
  • [4] Dexmedetomidine reduces myocardial ischemia-reperfusion injury in rats through PI3K/AKT/GSK-3β signaling pathway
    Zhang, Xiushuang
    Xu, Mingjun
    Che, Xiangming
    Cao, Xiuling
    Li, Xiaoguang
    [J]. MINERVA CARDIOANGIOLOGICA, 2020, 68 (01): : 58 - 59
  • [5] JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: effects of salvianolic acid A intervention
    Chen, Qiuping
    Xu, Tongda
    Li, Dongye
    Pan, Defeng
    Wu, Pei
    Luo, Yuanyuan
    Ma, Yanfeng
    Liu, Yang
    [J]. AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2016, 8 (06): : 2534 - 2548
  • [6] Glutamine protects myocardial ischemia-reperfusion injury in rats through the PI3K/Akt signaling pathway
    Cui, Z-H
    Zhang, X-J
    Shang, H-Q
    Wang, X.
    Rong, D.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (01) : 444 - 451
  • [7] Hydroxytyrosol Protects against Myocardial Ischemia/Reperfusion Injury through a PI3K/Akt-Dependent Mechanism
    Pei, Ying-hao
    Chen, Jiao
    Xie, Liang
    Cai, Xiao-min
    Yang, Run-Hua
    Wang, Xing
    Gong, Jian-bin
    [J]. MEDIATORS OF INFLAMMATION, 2016, 2016
  • [8] Effects of dexmedetomidine on myocardial ischemia-reperfusion injury through PI3K-Akt-mTOR signaling pathway
    Zhang, J.
    Jiang, H.
    Liu, D-H
    Wang, G-N
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (15) : 6736 - 6743
  • [9] Dexmedetomidine alleviates lung ischemia-reperfusion injury in rats by activating PI3K/Akt pathway
    Liang, S.
    Wang, Y.
    Liu, Y.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (01) : 370 - 377
  • [10] Effects of Hydrogen-rich Water on the PI3K/AKT Signaling Pathway in Rats with Myocardial Ischemia-Reperfusion Injury
    Li, Liangtong
    Li, Xiangzi
    Zhang, Zhe
    Liu, Li
    Liu, Tongtong
    Li, Shaochun
    Liu, Sen
    Zhou, Yujuan
    Liu, Fulin
    [J]. CURRENT MOLECULAR MEDICINE, 2020, 20 (05) : 396 - 405