Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway

被引:79
|
作者
Wang, Y. [1 ]
Zhang, Z. Z. [1 ]
Wu, Y. [1 ]
Ke, J. J. [1 ]
He, X. H. [1 ]
Wang, Y. L. [1 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Dept Anesthesiol, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
Ischemia and reperfusion; Quercetin; Postconditioning; PI3K/Akt; ISCHEMIA-REPERFUSION INJURY; PROTECTS; APOPTOSIS; HEARTS; ACTIVATION; MECHANISMS; INFARCTION; ALPHA;
D O I
10.1590/1414-431X20133036
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3- kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+ I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P, 0.05). Apoptotic cardiomyocytes and caspase3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P, 0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.
引用
收藏
页码:861 / 867
页数:7
相关论文
共 50 条
  • [1] Glutamine protects myocardial ischemia-reperfusion injury in rats through the PI3K/Akt signaling pathway
    Cui, Z-H
    Zhang, X-J
    Shang, H-Q
    Wang, X.
    Rong, D.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (01) : 444 - 451
  • [2] Hydromorphone hydrochloride preconditioning combined with postconditioning attenuates myocardial ischemia/reperfusion injury in rats by improving mitochondrial function and activating the PI3K/Akt signaling pathway
    Qiu, Liuji
    Yan, Yan
    Zhong, Guocheng
    Hou, Zhiqi
    Ye, Yongcai
    Lin, Jiaying
    Luo, Dexing
    [J]. CHEMICAL BIOLOGY & DRUG DESIGN, 2024, 103 (02)
  • [3] Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway
    Cheng, Xiangyang
    Hu, Jing
    Wang, Ya
    Ye, Hongwei
    Li, Xiaohong
    Gao, Qin
    Li, Zhenghong
    [J]. JOURNAL OF DIABETES RESEARCH, 2018, 2018
  • [4] Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury
    Cheng, Xiang Yang
    Gu, Xiao Yu
    Gao, Qin
    Zong, Qiao Feng
    Li, Xiao Hong
    Zhang, Ye
    [J]. MOLECULAR MEDICINE REPORTS, 2016, 14 (01) : 797 - 803
  • [5] Ginsenoside Rd Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Inflammation and Apoptosis through PI3K/Akt Signaling Pathway
    Wang, Yuanping
    Zheng, Jiading
    Xiao, Xieyang
    Feng, Cailing
    Li, Yinghong
    Su, Hui
    Yuan, Ding
    Wang, Qinghai
    Huang, Peihong
    Jin, Lili
    [J]. AMERICAN JOURNAL OF CHINESE MEDICINE, 2024, 52 (02): : 433 - 451
  • [6] Troxerutin Protects Against Myocardial Ischemia/Reperfusion Injury Via Pi3k/Akt Pathway in Rats
    Shu, Liliang
    Zhang, Wanzhe
    Huang, Chen
    Huang, Gongcheng
    Su, Gang
    [J]. CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 44 (05) : 1939 - 1948
  • [7] Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway
    Tang, Lu
    Mo, Yingli
    Li, Yunpeng
    Zhong, Yongkang
    He, Shangfei
    Zhang, Ya
    Tang, Ying
    Fu, Shanshan
    Wang, Xianbao
    Chen, Aihua
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 486 (03) : 774 - 780
  • [8] The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury
    Deng, Rui-ming
    Zhou, Juan
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 123
  • [9] Morphine Reduces Myocardial Apoptosis in Rats with Myocardial Ischemia-Reperfusion Injury Through PI3K/Akt/GSK-3β Pathway
    Ren, Yuhua
    Liu, Yuzhi
    Yang, Yong
    Zhang, Yanmin
    Zhang, Shaoyang
    [J]. PANMINERVA MEDICA, 2020,
  • [10] Berberine attenuates myocardial ischemia reperfusion injury by suppressing the activation of PI3K/AKT signaling
    Zhu Qin-Wei
    Li Yong-Guang
    [J]. EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2016, 11 (03) : 978 - 984