Graph Neural Network with Self-attention and Multi-task Learning for Credit Default Risk Prediction

被引:1
|
作者
Li, Zihao [1 ]
Wang, Xianzhi [1 ]
Yao, Lina [2 ]
Chen, Yakun [1 ]
Xu, Guandong [1 ]
Lim, Ee-Peng [3 ]
机构
[1] Univ Technol Sydney, Sydney, NSW 2007, Australia
[2] Univ New South Wales, Sydney, NSW 2052, Australia
[3] Singapore Management Univ, Singapore 188065, Singapore
关键词
Credit default risk prediction; Graph neural network; Self-attention; Multi-task learning;
D O I
10.1007/978-3-031-20891-1_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a graph neural network with self-attention and multi-task learning (SaM-GNN) to leverage the advantages of deep learning for credit default risk prediction. Our approach incorporates two parallel tasks based on shared intermediate vectors for input vector reconstruction and credit default risk prediction, respectively. To better leverage supervised data, we use self-attention layers for feature representation of categorical and numeric data; we further link raw data into a graph and use a graph convolution module to aggregate similar information and cope with missing values during constructing intermediate vectors. Our method does not heavily rely on feature engineering work and the experiments show our approach outperforms several types of baseline methods; the intermediate vector obtained by our approach also helps improve the performance of ensemble learning methods.
引用
下载
收藏
页码:616 / 629
页数:14
相关论文
共 50 条
  • [31] DFM-GCN: A Multi-Task Learning Recommendation Based on a Deep Graph Neural Network
    Xiao, Yan
    Li, Congdong
    Liu, Vincenzo
    MATHEMATICS, 2022, 10 (05)
  • [32] Federated Multi-task Graph Learning
    Liu, Yijing
    Han, Dongming
    Zhang, Jianwei
    Zhu, Haiyang
    Xu, Mingliang
    Chen, Wei
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (05)
  • [33] A graph multi-head self-attention neural network for the multi-point long-term prediction of sea surface temperature
    Sheng, Longquan
    Xu, LingYu
    Yu, Jie
    Li, ZhuoLin
    REMOTE SENSING LETTERS, 2023, 14 (08) : 786 - 796
  • [34] Detecting mental and physical disorders using multi-task learning equipped with knowledge graph attention network
    Zhang, Wei
    Kong, Ling
    Lee, Soobin
    Chen, Yan
    Zhang, Guangxu
    Wang, Hao
    Song, Min
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 149
  • [35] A Novel Methodology for Credit Spread Prediction: Depth-Gated Recurrent Neural Network with Self-Attention Mechanism
    Liu, Xiao
    Zhou, Rongxi
    Qi, Daifeng
    Xiong, Yahui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [36] MULTI-TASK DEEP NEURAL NETWORK FOR MULTI-LABEL LEARNING
    Huang, Yan
    Wang, Wei
    Wang, Liang
    Tan, Tieniu
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2897 - 2900
  • [37] Combining a multi-feature neural network with multi-task learning for emergency calls severity prediction
    Kanaan, Marianne Abi
    Couchot, Jean-Francois
    Guyeux, Christophe
    Laiymani, David
    Atechian, Talar
    Darazi, Rony
    ARRAY, 2024, 21
  • [38] Deep multi-task learning with relational attention for business success prediction
    Zhao, Jiejie
    Du, Bowen
    Sun, Leilei
    Lv, Weifeng
    Liu, Yanchi
    Xiong, Hui
    PATTERN RECOGNITION, 2021, 110
  • [39] A novel embedding learning framework for relation completion and recommendation based on graph neural network and multi-task learning
    Zhao, Wenbin
    Li, Yahui
    Fan, Tongrang
    Wu, Feng
    SOFT COMPUTING, 2022, 28 (Suppl 2) : 447 - 447
  • [40] Interpretable Multi-Task Learning for Product Quality Prediction with Attention Mechanism
    Yeh, Cheng-Han
    Fan, Yao-Chung
    Peng, Wen-Chih
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1910 - 1921