Graph Neural Network with Self-attention and Multi-task Learning for Credit Default Risk Prediction

被引:3
|
作者
Li, Zihao [1 ]
Wang, Xianzhi [1 ]
Yao, Lina [2 ]
Chen, Yakun [1 ]
Xu, Guandong [1 ]
Lim, Ee-Peng [3 ]
机构
[1] Univ Technol Sydney, Sydney, NSW 2007, Australia
[2] Univ New South Wales, Sydney, NSW 2052, Australia
[3] Singapore Management Univ, Singapore 188065, Singapore
来源
WEB INFORMATION SYSTEMS ENGINEERING - WISE 2022 | 2022年 / 13724卷
关键词
Credit default risk prediction; Graph neural network; Self-attention; Multi-task learning;
D O I
10.1007/978-3-031-20891-1_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a graph neural network with self-attention and multi-task learning (SaM-GNN) to leverage the advantages of deep learning for credit default risk prediction. Our approach incorporates two parallel tasks based on shared intermediate vectors for input vector reconstruction and credit default risk prediction, respectively. To better leverage supervised data, we use self-attention layers for feature representation of categorical and numeric data; we further link raw data into a graph and use a graph convolution module to aggregate similar information and cope with missing values during constructing intermediate vectors. Our method does not heavily rely on feature engineering work and the experiments show our approach outperforms several types of baseline methods; the intermediate vector obtained by our approach also helps improve the performance of ensemble learning methods.
引用
收藏
页码:616 / 629
页数:14
相关论文
共 50 条
  • [21] Multiple Relational Attention Network for Multi-task Learning
    Zhao, Jiejie
    Du, Bowen
    Sun, Leilei
    Zhuang, Fuzhen
    Lv, Weifeng
    Xiong, Hui
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1123 - 1131
  • [22] Credit scoring using multi-task Siamese neural network for improving prediction performance and stability
    Kwon, Soonjae
    Jang, Jaeyeon
    Kim, Chang Ouk
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [23] Deep Multi-task Augmented Feature Learning via Hierarchical Graph Neural Network
    Guo, Pengxin
    Deng, Chang
    Xu, Linjie
    Huang, Xiaonan
    Zhang, Yu
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 538 - 553
  • [24] Multi-task Recurrent Neural Network for Immediacy Prediction
    Chu, Xiao
    Ouyang, Wanli
    Yang, Wei
    Wang, Xiaogang
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3352 - 3360
  • [25] Incorporating edge convolution and correlative self-attention into graph neural network for material properties prediction
    Yang, Zexi
    Yu, Qi
    Zhan, Yapeng
    Liu, Jiying
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):
  • [26] Multi-task Graph Neural Network for Optimizing the Structure Fairness
    Wang, Jiahui
    Li, Meng
    Chen, Fangshu
    Meng, Xiankai
    Yu, Chengcheng
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2023, PT II, 2023, 14147 : 347 - 362
  • [27] MULTI-TASK LEARNING WITH CONTEXT-ORIENTED SELF-ATTENTION FOR BREAST ULTRASOUND IMAGE CLASSIFICATION AND SEGMENTATION
    Xu, Meng
    Huang, Kuan
    Qi, Xiaojun
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [28] Forecasting credit default risk with graph attention networks
    Zhou, Binbin
    Jin, Jiayun
    Zhou, Hang
    Zhou, Xuye
    Shi, Longxiang
    Ma, Jianhua
    Zheng, Zengwei
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2023, 62
  • [29] Dynamic Multi-Task Learning with Convolutional Neural Network
    Fang, Yuchun
    Ma, Zhengyan
    Zhang, Zhaoxiang
    Zhang, Xu-Yao
    Bai, Xiang
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1668 - 1674
  • [30] Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network
    Cheng, Zhongjian
    Yan, Cheng
    Wu, Fang-Xiang
    Wang, Jianxin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) : 2208 - 2218