Local translations associated to spectral sets

被引:0
|
作者
Dutkay, Dorin Ervin [1 ]
Haussermann, John [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Spectrum; tile; Hadamard matrix; Fuglede conjecture; local translations; COMPLEX HADAMARD-MATRICES; CONJECTURE;
D O I
10.1090/conm/626/12504
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In connection to the Fuglede conjecture, we study groups of local translations associated to spectral sets, i.e., measurable sets in R or Z that have an orthogonal basis of exponential functions. We investigate the connections between the groups of local translations on Z and on R and present some examples for low cardinality. We present some relations between the group of local translations and tilings.
引用
收藏
页码:107 / 120
页数:14
相关论文
共 50 条
  • [41] HELSON SETS AND SPECTRAL SYNTHESIS
    BENEDETTO, JJ
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (02): : 169 - +
  • [42] Spectral sets and scalar dilations
    Putinar, M
    HOUSTON JOURNAL OF MATHEMATICS, 1997, 23 (02): : 247 - 265
  • [43] Spectral sets and weak tiling
    Kolountzakis, Mihail N.
    Lev, Nir
    Matolcsi, Mate
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [44] Spectral partially ordered sets
    Juett, Jason Robert
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (05) : 2232 - 2242
  • [45] Spectral gaps for sets and measures
    Poltoratski, Alexei
    ACTA MATHEMATICA, 2012, 208 (01) : 151 - 209
  • [46] Unitary groups and spectral sets
    Dutkay, Dorin Ervin
    Jorgensen, Palle E. T.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (08) : 2102 - 2141
  • [47] ON CERTAIN DISTINGUISHED SPECTRAL SETS
    DOBBS, DE
    FONTANA, M
    PAPICK, IJ
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1981, 128 : 227 - 240
  • [48] Quantum Information on Spectral Sets
    Harremoes, Peter
    Brock, Niels
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1549 - 1553
  • [49] SPECTRAL SETS FOR NUMERICAL RANGE
    Klaja, Hubert
    Mashreghi, Javad
    Ransford, Thomas
    OPERATORS AND MATRICES, 2017, 11 (03): : 749 - 757
  • [50] Wavelets, tiling, and spectral sets
    Wang, Y
    DUKE MATHEMATICAL JOURNAL, 2002, 114 (01) : 43 - 57